scholarly journals AN OPTIMIZED SURF-BASED FIRE AND SMOKE DETECTION SYSTEM USING IMAGE PROCESSING FROM SURVEILLANCE VIDEO.

Over the last decades, digital image processing based fire and smoke detection have been improving steadily to provide a more accurate detection results in the area of surveillance security system. Detection of the fire and smoke from the surveillance videos is very challenging task due to the complex structural properties of the video frames or images and need improvisation in the existing work by utilization of feature selection or optimization approach to select on optimal feature according to the fire and smoke. A research based on the combination of various feature extraction techniques with feature selection approach for fire and smoke detection has been presented in this paper. In this research, we develop Fire and Smoke Detection (FSD) system using digital image processing with the concept of Speed up Robust Feature (SURF) along with the Intelligent Water Drops (IWD) as a feature selection and optimization algorithm. Here, Artificial Neural Network (ANN) is used as an Artificial Intelligence (AI) technique with that helps to select a set of optimal feature from the extracted by SURF descriptor from the video frames. By utilizing the concept of optimized ANN, the accuracy of proposed FSD system is increases in terms of detection accuracy and with minimum percentage of error. At last, the performance of the FSD system is calculated to validate the model and this shows that it is possible to use IWD with SURF as a feature extraction technique in order to detect the fire or smoke form the surveillance video with minimum error rate and the simulation results clearly show the effectiveness of proposed FSD system

Author(s):  
Alda Cendekia Siregar ◽  
Barry Ceasar Octariadi

Traditional fabric is a cultural heritage that has to be preserved. Kain Lunggi is Sambas traditional fabric that saw a decline in its crafter. To introduce Kain Lunggi in a broader national and global society in order to preserve it, a digital image processing based system to perform Kain Lunggi pattern recognition need to be built. Feature extraction is an important part of digital image processing. The visual feature that does not represent the character of an object will affect the accuracy of a recognition system. The purposes of this research are to perform feature selection on sets of feature to determine the best feature that can increase recognition accuracy. This research conducted in several steps which are image acquisition of Kain Lunggi pattern, preprocessing to reduce image noise, feature extraction to obtain image features, and feature selection. GLCM is implemented as a feature extraction method.  Feature extraction result will be used in a feature selection process using CFS (Correlation-based Feature Selection) methods. Selected features from CFS process are Angular Second Moment, Contrast, and Correlation. Selected features evaluation is conducted by calculating classification accuracy with the KNN method. Classification accuracy prior to feature extraction is 85.18% with K values K=1 ; meanwhile, the accuracy increases to 88.89% after feature selection. The highest accuracy improvement of 20.74% in KNN occurred when using K value K= 4.


Author(s):  
Radi ◽  
Anggoro C. Sukartiko ◽  
M. Prasetya Kurniawan ◽  
R. Agus Pamudji ◽  
Gabriel C. Saragi ◽  
...  

2019 ◽  
Vol 16 (33) ◽  
pp. 541-548
Author(s):  
V. V. BODRYSHEV ◽  
N. P. KORZHOV ◽  
L. G. NARTOVA ◽  
L. N. RABINSKIY

The scientific paper covers the research of the geometric laws of the intersection of two angle shock waves formed upon supersonic flow with zero incidence of two bodies. The positions of shock waves engaging with the surfaces of the models of axially symmetrical bodies are determined. Systems of analysis and decision support are based on the involvement of photographs (video frames) processing results by the image intensity parameter. This method facilitates the identification of the shock wave angle with a higher rate of probability, and, therefore, the more precise definition of the engagement points of the shock wave with the researched surface. This paper analyses the video frames of the interaction of shock waves using the digital image processing method by the image intensity parameter, the formulas determining the intersection point of shock waves, that occur upon the supersonic motion of two axially symmetric bodies near each other, are determined. The positions of the point of contact of the outgoing shock wave with the surface of the second object were determined, factoring in the difference in the the incoming and outgoing shock wave angles. The availability of sufficient statistics allowed to identify theoretical relationships between the gas flow rate, the geometric parameters of objects, the distances between them, density, pressure and image intensity in photographs. The method of digital image processing can be applied to the analysis of shock waves during the flow around a supersonic stream of bodies with a "blunt" end. The shock wave front in this case is described by a secondorder curve, upon the analysis of which it is necessary to select a portion of this curve, replacing it with some accuracy by a straight line segment (Mach line).


2018 ◽  
Vol 7 (3.10) ◽  
pp. 184
Author(s):  
Ms S.Vanithamai ◽  
Dr S.Purushothaman

This research work can identify the vehicle and classify the vehicle using the vehicle features such as shape, color etc., The parameters extracted from the vehicle classification are based on movement of the vehicle are classified as static, movement variation in the successive video frames are used to identify the hazardness of the vehicle. Digital Image processing techniques are used in the object detection. 


Author(s):  
Dr. S. Gnanavel Et al.

Lung cancer is a serious health concern, which is also one of the major types of cancer that has a profound impact on the overall cancer mortality rates. The detection of lung cancer nodules is quite a challenge as the major challenge is the structure of the cancer nodules; here the cells are imbricated with each other. The prediction and classification of lung cancer is done by applying digital image processing techniques to the acquired input images of the nodules. This methodology also aids early detection which in turns reduces the criticality of the condition and provides scope for early intervention and treatment. The prediction methodology involves extracting several features of the lung cancer cell and then applying pattern-based prediction techniques. In recent times, owing to the fact that the time and execution parameters are very important aspects to detect the abnormality of the fast-spreading cancer cells, digital image processing techniques are being widely deployed. The fundamental factors of this research are the quality of image assessment and the precision of feature extraction. Following our proposed methodology, a clear picture of the region of interest is obtained which acts as a basis for the feature extraction process. Here an overall evaluation of the digital image processing techniques used by previous scholars for the finding and classification of lung cancer nodules have also been emphasised.


Sign in / Sign up

Export Citation Format

Share Document