scholarly journals ANALYTICAL SOLUTION OF A NON - HOMOGENEOUS ONE - DIMENSIONAL ADVECTION DIFFUSION EQUATION WITH TEMPORALLY VARYING COEFFICIENTS .

Advection Diffusion Equation is a partial differential equation that describes the transport of pollutants in rivers. Its coefficients (dispersion and velocity) can be constant, dependent on space or time or both space and time. This study presents an analytical solution of a one dimensional non - homogeneous advection diffusion equation with temporally dependent coefficients, describing one dimensional pollutant transport in a section of a river. Temporal dependence is accounted for by considering a temporally dependent dispersion coefficient along an unsteady flow assuming that dispersion is proportional to the velocity. Transformations are used to convert the time dependent coefficients to constant coefficients and to eliminate the advection term. Analytical solution is obtained using Fourier transform method considering an instantaneous point source. Numerical results are presented. The findings show that concentration monotonically decreases with increasing distance and increasing time.

Author(s):  
Elham Bayatmanesh

The Several numerical techniques have been developed and compared for solving the one-dimensional and three-dimentional advection-diffusion equation with constant coefficients. the subject has played very important roles to fluid dynamics as well as many other field of science and engineering. In this article, we will be presenting the of n-dimentional and we neglect the numerical examples.


2019 ◽  
Vol 396 ◽  
pp. 91-98 ◽  
Author(s):  
Régis S. Quadros ◽  
Glênio A. Gonçalves ◽  
Daniela Buske ◽  
Guilherme J. Weymar

This work presents an analytical solution for the transient three-dimensional advection-diffusion equation to simulate the dispersion of pollutants in the atmosphere. The solution of the advection-diffusion equation is obtained analytically using a combination of the methods of separation of variables and GILTT. The main advantage is that the presented solution avoids a numerical inversion carried out in previous works of the literature, being by this way a totally analytical solution, less than a summation truncation. Initial numerical simulations and statistical comparisons using data from the Copenhagen experiment are presented and prove the good performance of the model.


2019 ◽  
Vol 14 (3) ◽  
pp. 309
Author(s):  
Derya Avci ◽  
Aylіn Yetіm

In this study, a linear advection–diffusion equation described by Atangana–Baleanu derivative with non-singular Mittag-Leffler kernel is considered. The Cauchy, Dirichlet and source problems are formulated on the half-line. The main motivation of this work is to find the fundamental solutions of prescribed problems. For this purpose, Laplace transform method with respect to time t and sine/cosine-Fourier transform methods with respect to spatial coordinate x are applied. It is remarkable that the obtained results are quite similar to the existing fundamental solutions of advection–diffusion equation with time-Caputo fractional derivative. Although the results are mathematically similar in both formulations, the AB derivative is a non-singular operator and provides a significant advantage in the computational processes. Therefore, it is preferable to replace the Caputo derivative in modelling such diffusive transports.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
A. R. Appadu ◽  
H. H. Gidey

We perform a spectral analysis of the dispersive and dissipative properties of two time-splitting procedures, namely, locally one-dimensional (LOD) Lax-Wendroff and LOD (1, 5) [9] for the numerical solution of the 2D advection-diffusion equation. We solve a 2D numerical experiment described by an advection-diffusion partial differential equation with specified initial and boundary conditions for which the exact solution is known. Some errors are computed, namely, the error rate with respect to theL1norm, dispersion and dissipation errors. Lastly, an optimization technique is implemented to find the optimal value of temporal step size that minimizes the dispersion error for both schemes when the spatial step is chosen as 0.025, and this is validated by numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document