scholarly journals Computational Block-Pulse Functions Method for Solving Volterra Integral Equations with Delay

Author(s):  
Hameed Kadhim Dawood

The aim of this work is to present method of the Block-pulse function approach to numerical solution of Volterra integral equations with delay. This method is used to obtain numerical solution. Moreover, programs for his method is written in MATLAB language. An error analysis is worked out and applications demonstrated through illustrative examples


2020 ◽  
Vol 28 (3) ◽  
pp. 209-216
Author(s):  
S. Singh ◽  
S. Saha Ray

AbstractIn this article, hybrid Legendre block-pulse functions are implemented in determining the approximate solutions for multi-dimensional stochastic Itô–Volterra integral equations. The block-pulse function and the proposed scheme are used for deriving a methodology to obtain the stochastic operational matrix. Error and convergence analysis of the scheme is discussed. A brief discussion including numerical examples has been provided to justify the efficiency of the mentioned method.



2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. Maleknejad ◽  
M. Khodabin ◽  
F. Hosseini Shekarabi

We present a new technique for solving numerically stochastic Volterra integral equation based on modified block pulse functions. It declares that the rate of convergence of the presented method is faster than the method based on block pulse functions. Efficiency of this method and good degree of accuracy are confirmed by a numerical example.



2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Amir Ahmad Khajehnasiri ◽  
R. Ezzati ◽  
M. Afshar Kermani

Abstract The main aim of this paper is to use the operational matrices of fractional integration of Haar wavelets to find the numerical solution for a nonlinear system of two-dimensional fractional partial Volterra integral equations. To do this, first we present the operational matrices of fractional integration of Haar wavelets. Then we apply these matrices to solve systems of two-dimensional fractional partial Volterra integral equations (2DFPVIE). Also, we present the error analysis and convergence as well. At the end, some numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method.



2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Ayyubi Ahmad

A numerical method based on modified block pulse functions is proposed for solving the mixed linear Volterra-Fredholm integral equations. We obtain an integration operational matrix of modified block pulse functions on interval [0,T). A modified block pulse functions and their operational matrix of integration, the mixed linear Volterra-Fredholm integral equations can be reduced to a linear system of algebraic equations. The rate of convergence is O(h) and error analysis of the proposed method are discussed. Some examples are provided to show that the proposed method have a good degree of accuracy.





2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Jieheng Wu ◽  
Guo Jiang ◽  
Xiaoyan Sang

AbstractIn this paper, an efficient numerical method is presented for solving nonlinear stochastic Itô–Volterra integral equations based on Haar wavelets. By the properties of Haar wavelets and stochastic integration operational matrixes, the approximate solution of nonlinear stochastic Itô–Volterra integral equations can be found. At the same time, the error analysis is established. Finally, two numerical examples are offered to testify the validity and precision of the presented method.



2016 ◽  
Vol 9 (3) ◽  
pp. 416-431 ◽  
Author(s):  
Fakhrodin Mohammadi

AbstractThis paper presents a computational method for solving stochastic Ito-Volterra integral equations. First, Haar wavelets and their properties are employed to derive a general procedure for forming the stochastic operational matrix of Haar wavelets. Then, application of this stochastic operational matrix for solving stochastic Ito-Volterra integral equations is explained. The convergence and error analysis of the proposed method are investigated. Finally, the efficiency of the presented method is confirmed by some examples.



Sign in / Sign up

Export Citation Format

Share Document