Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM)

2020 ◽  
Vol 4 (5) ◽  
pp. 915-922
Author(s):  
Helena Nurramdhani Irmanda ◽  
Ria Astriratma

This study aims to create a model for categorizing pantun types and analyze the accuracy of support vector machines (SVM). The first stage is collecting pantun that have been labeled with pantun category. The pantun categories consist of pantun for children, pantun for young people, and pantun for elder. After collecting data, the next stage is pre-processing. This pre-processing stage makes data ready to be processed on the extraction stage. The pre-processing stage consists of text segmentation, case folding, tokenization, stop word removal, and stemming. The feature extraction stage is intended to analyze potential information and represent terms as a vector. Separating training data and testing data is necessary to be conducted before the classification process. Then the classification process is done by using multiclass SVM. The results of the classification are evaluated to obtain accuracy and will be analyzed whether the classification model is proper to be used. The results showed that SVM classified the types of pantun with accuracy of 81,91%.  

2018 ◽  
pp. 1381-1390
Author(s):  
Vandana M. Ladwani

Support Vector Machines is one of the powerful Machine learning algorithms used for numerous applications. Support Vector Machines generate decision boundary between two classes which is characterized by special subset of the training data called as Support Vectors. The advantage of support vector machine over perceptron is that it generates a unique decision boundary with maximum margin. Kernalized version makes it very faster to learn as the data transformation is implicit. Object recognition using multiclass SVM is discussed in the chapter. The experiment uses histogram of visual words and multiclass SVM for image classification.


Author(s):  
Vandana M. Ladwani

Support Vector Machines is one of the powerful Machine learning algorithms used for numerous applications. Support Vector Machines generate decision boundary between two classes which is characterized by special subset of the training data called as Support Vectors. The advantage of support vector machine over perceptron is that it generates a unique decision boundary with maximum margin. Kernalized version makes it very faster to learn as the data transformation is implicit. Object recognition using multiclass SVM is discussed in the chapter. The experiment uses histogram of visual words and multiclass SVM for image classification.


Author(s):  
Ribana Roscher ◽  
Jan Behmann ◽  
Anne-Katrin Mahlein ◽  
Jan Dupuis ◽  
Heiner Kuhlmann ◽  
...  

We analyze the benefit of combining hyperspectral images information with 3D geometry information for the detection of <i>Cercospora</i> leaf spot disease symptoms on sugar beet plants. Besides commonly used one-class Support Vector Machines, we utilize an unsupervised sparse representation-based approach with group sparsity prior. Geometry information is incorporated by representing each sample of interest with an inclination-sorted dictionary, which can be seen as an 1D topographic dictionary. We compare this approach with a sparse representation based approach without geometry information and One-Class Support Vector Machines. One-Class Support Vector Machines are applied to hyperspectral data without geometry information as well as to hyperspectral images with additional pixelwise inclination information. Our results show a gain in accuracy when using geometry information beside spectral information regardless of the used approach. However, both methods have different demands on the data when applied to new test data sets. One-Class Support Vector Machines require full inclination information on test and training data whereas the topographic dictionary approach only need spectral information for reconstruction of test data once the dictionary is build by spectra with inclination.


2011 ◽  
Vol 230-232 ◽  
pp. 625-628
Author(s):  
Lei Shi ◽  
Xin Ming Ma ◽  
Xiao Hong Hu

E-bussiness has grown rapidly in the last decade and massive amount of data on customer purchases, browsing pattern and preferences has been generated. Classification of electronic data plays a pivotal role to mine the valuable information and thus has become one of the most important applications of E-bussiness. Support Vector Machines are popular and powerful machine learning techniques, and they offer state-of-the-art performance. Rough set theory is a formal mathematical tool to deal with incomplete or imprecise information and one of its important applications is feature selection. In this paper, rough set theory and support vector machines are combined to construct a classification model to classify the data of E-bussiness effectively.


2020 ◽  
Vol 24 (5) ◽  
pp. 1141-1160
Author(s):  
Tomás Alegre Sepúlveda ◽  
Brian Keith Norambuena

In this paper, we apply sentiment analysis methods in the context of the first round of the 2017 Chilean elections. The purpose of this work is to estimate the voting intention associated with each candidate in order to contrast this with the results from classical methods (e.g., polls and surveys). The data are collected from Twitter, because of its high usage in Chile and in the sentiment analysis literature. We obtained tweets associated with the three main candidates: Sebastián Piñera (SP), Alejandro Guillier (AG) and Beatriz Sánchez (BS). For each candidate, we estimated the voting intention and compared it to the traditional methods. To do this, we first acquired the data and labeled the tweets as positive or negative. Afterward, we built a model using machine learning techniques. The classification model had an accuracy of 76.45% using support vector machines, which yielded the best model for our case. Finally, we use a formula to estimate the voting intention from the number of positive and negative tweets for each candidate. For the last period, we obtained a voting intention of 35.84% for SP, compared to a range of 34–44% according to traditional polls and 36% in the actual elections. For AG we obtained an estimate of 37%, compared with a range of 15.40% to 30.00% for traditional polls and 20.27% in the elections. For BS we obtained an estimate of 27.77%, compared with the range of 8.50% to 11.00% given by traditional polls and an actual result of 22.70% in the elections. These results are promising, in some cases providing an estimate closer to reality than traditional polls. Some differences can be explained due to the fact that some candidates have been omitted, even though they held a significant number of votes.


Sign in / Sign up

Export Citation Format

Share Document