scholarly journals Effect of chronic administration of arachidonic acid on the performance of learning and memory in aged rats

2019 ◽  
Vol 63 (0) ◽  
Author(s):  
Takayuki Inoue ◽  
Michio Hashimoto ◽  
Masanori Katakura ◽  
Shahdat Hossain ◽  
Kentaro Matsuzaki ◽  
...  
1995 ◽  
Vol 674 (2) ◽  
pp. 252-259 ◽  
Author(s):  
Gary W. Arendash ◽  
Gregory J. Sengstock ◽  
Paul R. Sanberg ◽  
William R. Kem

2014 ◽  
Vol 91 (4) ◽  
pp. 119-127 ◽  
Author(s):  
Takayuki Inoue ◽  
Michio Hashimoto ◽  
Masanori Katakura ◽  
Yoko Tanabe ◽  
Abdullah Al Mamun ◽  
...  

2016 ◽  
Vol 58 (2) ◽  
pp. 114-121 ◽  
Author(s):  
Nozomi Kaneai ◽  
Kazumi Sumitani ◽  
Koji Fukui ◽  
Taisuke Koike ◽  
Hirokatsu Takatsu ◽  
...  

2012 ◽  
Vol 31 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Yanyong Liu ◽  
Haji Akber Aisa ◽  
Chao Ji ◽  
Nan Yang ◽  
Haibo Zhu ◽  
...  

Aging-associated cognitive impairment is an important health care issue since individuals with mild cognitive impairment are more likely to develop Alzheimer’s disease. In the present study, the protective effect of Gossypium herbaceam extracts (GHE) on learning and memory impairment associated with aging were examined in vivo using Morris water maze and step through task. Furthermore, the antioxidant activity and neuroprotective effect of GHE was investigated with methods of histochemistry and biochemistry. These data showed that oral administration with GHE at the doses of 35, 70, and 140 mg/kg exerted an improved effect on the learning and memory impairment in aged rats. Subsequently, GHE afforded a beneficial action on eradication of free radicals without influence on the activity of glutathione peroxidase and superoxide dismutase. GHE treatment enhanced the expression levels of nerve growth factor. Meanwhile, proliferation of neural progenitor cells was elevated in hippocampus after treatment with GHE. Taken together, neurogenic niche improvement could be involved in the mechanism underlying neuroprotection of GHE against aging-associated cognitive impairment. These findings suggested that GHE might be a potential agent as cognitive-enhancing drugs that delay or halt mild cognitive impairment progression to Alzheimer’s disease or treatment of aging-associated cognitive impairment.


2020 ◽  
Vol 24 (4) ◽  
pp. 294-307
Author(s):  
Ehsan Aali ◽  
◽  
Mohammad Hossein Esmaeili ◽  
Sead Shima Mahmodi ◽  
Poriea Solimani ◽  
...  

Background: Alzheimer’s Disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. Peroxisome Proliferator-Activated Receptor-γ (PPARγ) play a crucial role in regulating insulin sensitivity and may serve as potential therapeutic targets for AD. Pioglitazone (PIOG), as a PPARγ agonist, reduces β-amyloid and tau proteins, and inhibits neuroinflammation. Objective: This study aims to evaluate the effects of PIOG chronic administration on learning and memory in rat model of Streptozotocin (STZ)-induced AD Methods: Forty-two male Wistar rats were divided into two groups: A. Normal rats divided into three subgroups of Control, Dimethyl Sulfoxide (DMSO), and PIOG; and B. AD rats divided into four subgroups of Vehicle, STZ, STZ+DMSO and STZ+PIOG. The last two AD subgroups received 0.2 mL DMSO and PIOG (10 mg/kg per day) for 21 days. For induction of AD, STZ (3 mg/kg, 10 μl per injection site) were administered into lateral ventricles. All rates were trained under the Morris water maze task. Findings: PIOG impaired the spatial learning and memory in normal rats. Intracerebroventricular injection of STZ significantly increased escape latency and swimming time to find the hidden platform compared to the control group (P<0.05). The amnesic effect of STZ was prevented by PIOG administration such that the escape latency and swimming time to find the hidden platform in the STZ+PIOG group were significantly lower than in the STZ+DMSO group (P<0.05). Conversely, the percentage of time spent and distance swimming in the target quadrant in the probe test in the STZ+ PIOG group rats were significantly higher than those in the STZ + DMSO group. Conclusion: PIOG administration impaired spatial learning and memory in normal rats, but improved learning and memory in rats with STZ-induced AD. It can be useful for treatment of cognitive impairment in AD patients.


Lipids ◽  
2014 ◽  
Vol 49 (9) ◽  
pp. 855-869 ◽  
Author(s):  
Nursiati Mohamad Taridi ◽  
Nazirah Abd Rani ◽  
Azian Abd Latiff ◽  
Wan Zurinah Wan Ngah ◽  
Musalmah Mazlan

Sign in / Sign up

Export Citation Format

Share Document