escape latency
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 41)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 15 ◽  
Author(s):  
Zhixin Lv ◽  
Limuge Che ◽  
Yiri Du ◽  
Jianshe Yu ◽  
Enboer Su ◽  
...  

ObjectiveTo study the effect of Eerdun Wurile (EW), a traditional Mongolian medicine, on the cognitive function of rats by activating the IRS-PI3K-AKT-GLUT4 pathway in an animal model of postoperative cognitive dysfunction (POCD).MethodsFifty clean-grade adults Sprague Dawley (SD) male rats were assigned to one of five groups: (1) a control group with no anesthesia (Group C), (2) a POCD model group with anesthesia only (Group P), (3) POCD group with low-dose EW treated (Group L), (4) a POCD group with high-dose EW treated (Group H), and (5) a POCD model group with dexmedetomidine treated (Group D) for positive control. The study started 7 days after all rats had acclimated to housing. Rats were trained in the Morris Water Maze navigation 5 days before surgery. All rats underwent the same maze for navigation and spatial exploration experiments on the preoperative day 1 and postoperative days 1, 3, 5, and their learning and memory abilities were assessed. At the end of the water maze experiment, rats were sacrificed to obtain hippocampal tissue. The mRNA levels of IRS-2, PI3K, AKT, and GLUT4 were measured in the hippocampus by real-time PCR, and the expression of IRS-2, PI3K, AKT, and GLUT4 protein in the hippocampus was determined by Western blotting to investigate the potential mechanisms at the molecular level.ResultsCompared to control Group C, Group P, L, H, and D showed prolonged escape latency (P < 0.05) and decreased number of times to cross the platform (P < 0.05) at 1, 3 and 5 days after surgery. Compared to Group P, Group L, H, and D showed a decrease in escape latency with an increased number of crossing the platform at all-time points after surgery (P < 0.05). Within individual P, L, H, and D groups, escape latencies decreased (P < 0.05) and the number of times that the platform was crossed increased (P < 0.05) between postoperative days 3 and 5 compared to postoperative 1 day. Compared to Group C, the mRNA expression of IRS-2, PI3K, AKT and GLUT4 in the hippocampus of P, L, H, and D groups were decreased (P < 0.05). Compared to Group P, IRS-2, PI3K, AKT, and GLUT4 in the hippocampus of L, H, and D groups were increased (P < 0.05). Compared with Group D, the expression levels of IRS-2 and AKT in both L and H groups were higher. The expression level of PI3K in Group L was also higher (P < 0.05) vs Group D. The expression of AKT mRNA in Group H was higher than in Group L (P < 0.05). Compared to Group C, the p-IRS-2/IRS-2 ratio in the hippocampus of Group P was higher than that of Group C (P < 0.05). Compared to Group P, the ratios of p-IRS-2/IRS-2 in Group L, Group H, and Group D were lower, and the ratios of the p-PI3K/PI3K, p-AKT/AKT, and p-GLUT4/GLUT4 were higher (P < 0.05).ConclusionAdministration of EW showed the effect on the signaling pathway in rats with POCD. The therapeutic effect was better in the low-dose group. This could be related to the insulin downstream signal molecule PI3K and the IRS-PI3K-AKT-GLUT4 signaling pathway.


Author(s):  
Yamini Y ◽  
Pushpa kumari B ◽  
Mehathaj S ◽  
Phani deepthi V

Objective Alzheimer's illnesses are becoming medical nightmares because there is no exact solution and existing nootropic medicines (Piracetam, tacrine, and metrifonate) have significant drawbacks. The goal of this study was to see if the ethanolic root extract of Grewia hirsuta (ERGH) could improve memory in rats who had been given scopolamine. Materials and procedures At rats, ERGH was given orally in dosages of 200 and 400 mg/kg for 28 days, followed by Scopolamine (18 mg/kg i.p.) from the 25th to the 27th day. The usual nootropic drug was piracetam (200 mg/kg). The elevated plus maze (EPM), Morris water maze (MWM), and passive avoidance (PA) paradigms are used to assess cognitive functioning. Invivo anti-oxidant activity and brain acetylcholine esterase (AchE) activity were assessed.  Results: At the indicated doses, ERGH extract showed a substantial memory-enhancing activity by decreasing the transfer latency in EPM, increasing the escape latency in MWM, and increasing the shock-free zone in PA. In scopolamine-induced amnesia rats, pretreatment with ERGH resulted in a significant drop in AchE enzyme, an increase in enzymatic antioxidant, and a decrease in MDA levels. Conclusion Because of its several favorable benefits, such as memory-improving properties, anticholinesterase activity, and antioxidant activity, ERGH may prove to be a useful drug in the current study, and it would be important to investigate its potential in the care of Alzheimer's patients.


2021 ◽  
Author(s):  
hui qiu ◽  
min xue liu

Abstract Echinacoside (ECH), a phenylethanoid glycoside, has protective activity in neurodegenerative disease, including anti-inflammation and antioxidation. However, the effects of ECH in Alzheimer’s disease (AD) are not very clear. This present study investigates the role and mechanism of ECH in the pathological process of AD. APP/PS1 mice were treated with ECH in 50 mg/kg/d for 3 months. Morris water maze, nesting test and immunofluorescence staining were used to observe whether ECH could improve AD pathology. Western blot was used to study the mechanism of ECH improving AD pathology. The results showed that ECH alleviated the memory impairment of APP/PS1 mice by reducing the time of escape latency as well as increasing the times of crossing the platform and rescued the impaired ability to construct nests. In addition, ECH significantly reduced the deposition of senile plaques in the brain and decreased the expression of BACE1 in APP/PS1 mice through activating PI3K/AKT/ Nrf2/PPARγ pathway. Furthermore, ECH decreased ROS formation, GP91 and 8-OHdG expression, upregulated the expression of SOD1 and SOD2 as well as activating the PI3K/AKT/Nrf2 signaling pathway. Moreover, ECH inhibited glia cells activation, pro-inflammatory cytokine IL-1β and TNF-α release, NLRP3 inflammasome formation through TXNIP/Trx-1 signaling pathway. In conclusion, this paper reported that ECH improved cognitive function, inhibited oxidative stress and inflammatory response in AD. Therefore, we suggest that ECH may be considered as a potential drug for AD treatment.


2021 ◽  
pp. 1-9
Author(s):  
Hui Li ◽  
Weijia Du ◽  
Yawei Yuan ◽  
Jingjing Xue ◽  
Qiang Li ◽  
...  

<b><i>Introduction:</i></b> Numerous pieces of evidence demonstrated that isoflurane induces hippocampal cell injury and cognitive impairments. Picroside II has been investigated for its anti-apoptosis and antioxidant neuroprotective effects. We aimed to explore the protective effects of picroside II and the role of microRNA-195 (miR-195) on isoflurane-induced neuronal injury in rats. <b><i>Methods:</i></b> The Morris water maze test was used to evaluate the effects of isoflurane on rats regarding escape latency and time in quadrant parameters. Real-time quantitative PCR was used to detect the expression levels of miR-195 and pro-inflammatory cytokines, including inter­leukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) mRNA, in the hippocampal tissues and neuronal cells. <b><i>Results:</i></b> The picroside II significantly improves isoflurane-induced higher escape latency and lower time spent in the quadrant compared with the control rats. Picroside II also promotes cell viability and suppresses cell apoptosis of isoflurane-induced neuronal cells. Besides, picroside II suppresses the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and miR-195 in vivo and in vitro. Furthermore, overexpression of miR-195 abrogates the effects of picroside II on the expression of pro-inflammatory cytokines. The appropriate dose of picroside II is 20 mg/kg. <b><i>Conclusion:</i></b> Picroside II could protect the nervous system possibly through inhibiting the inflammatory response in the isoflurane-induced neuronal injury of rats. The protective effect of picroside II may be achieved by downregulating the expression of miR-195 and then inhibiting the inflammatory response.


2021 ◽  
Author(s):  
Qian Zhou ◽  
Dongjin Xie ◽  
Ting Chen ◽  
Youguang Gao ◽  
Lanying Lin ◽  
...  

Abstract Background: The study sought to investigate the effects of dexmedetomidine on cognitive function after anesthesia and to examine its actual mechanism. Methods: A total of 48 rats were randomly divided into model Groups A, B, C, or D. Rats in Groups A, B, and C received a hypodermic injection of D-gal with a concentration of 1,000 mg·kg−1·d−1 respectively for 1 week. Group D received the same volume of saline. The Morris water maze (MWM) test was performed within 6 days of the injection. After the behavior test, Group A received an inhalation dose of 2% sevoflurane. Group B received an inhalation dose of 2% sevoflurane and an intraoperative infusion of dexmedetomidine with a concentration of 10 μg·kg−1·h−1. Group C served as the control group and received no treatment. Group D received an inhalation dose of 2% sevoflurane. Results: In relation to the model establishment, we found that there was no significant difference in body weight and swimming speed before and after modeling. There was no statistically significant difference in the escape latency between Groups A, B, C, and D before modeling. After modeling, there was no statistical difference in the escape latency between Groups A, B, and C, but the difference was statistically significant when compared to Group D (P<0.05). In relation to the dexmedetomidine intervention, we found that compared to Group C, MWM test performance in Group A and B was considerably worse (longer escape latencies and fewer platform crossings within 90 seconds), and were more significant in Group A. .Compared with Group D, the levels of IL-1, IL-6, and TNF-α of the brain homogenates were elevated, and this elevation was highest in Group A, followed by Group B; The pathological changes were consistent with changes in behavioral tests. In group A, there were obvious disorders of glial cell arrangement, apoptosis and deletion. There was no significant change in group D. And the changes of vertebral cells in group B and group C were slight, with orderly arrangement and intact cell structure.Conclusions: Dexmedetomidine inhibits the apoptosis of hippocampal cells and reduces the cognitive dysfunction of rats with MCI induced by D-galactose via the inhibition of the release of inflammatory cytokines.


2021 ◽  
Author(s):  
Abebaye Aragaw Limenie ◽  
Tesfaye Tolessa Dugul ◽  
Eyasu Mekonnen Eshetu

Background : The burdens of psychostimulant use disorders are becoming a worldwide problem. One of the psychostimulants widely consumed in Ethiopia and East African countries is Catha edulis Forsk (khat). However, no studies have been conducted on the cognitive effects of khat and its correlation with serum electrolytes. The present study was aimed to evaluate the effects of khat on cognitive functions and its correlation with serum electrolytes. Materials and Methods — A total of 36 adult (7-8 weeks) wild-type male Swiss albino rats weighing between 213 and 229g were used in this study. The rats were received crude khat extract subchronically (kesc) (100 mg/kg, 200 mg/kg and 300 mg/kg b.w), khat juice (khJ 2.5 mL/kg) and 2% tween 80 in distilled water (T80W- v/v, vehicle) and khat extract subacutely (kesa) (300 mg/kg). Spatial learning and memory were measured using Morris water maze model and serum electrolytes were measured using Cobas 6000. The data were analyzed using SPSS version 21.0 and Microsoft Excel. Results : Spatial learning was improved with trials across the groups, while average escape latency (s) and swim path-length (cm) of rats that received kesc 200 mg/kg (p<0.001 and p<0.001) and kesc 300 mg/kg (p<0.01 and p<0.001) was significantly greater than rats that received the vehicle. However, there was no significant difference in the latency between rats that received kesa 300mg/kg and vehicle (p>0.05). Thigmotaxis was significantly higher in rats that received all doses of khat extract (p<0.001). The time spent in the target quadrant in rats that received kesc 300 mg/kg was significantly reduced (p<0.05). Serum calcium level was inversely correlated with the escape latency (R=-0.417, p<0.05) in rats that received khat. Conclusions : khat extract and juice administered subchronically, but not subacute administration, impaired learning and memory in rats and was associated with serum calcium reduction. The neuronal basis for such alteration should be investigated.


Author(s):  
Liyuan Xu ◽  
Linna Zhu ◽  
Lina Zhu ◽  
Dandan Chen ◽  
Kelong Cai ◽  
...  

This study aimed to investigate the effects and potential mechanisms of exercise combined with an enriched environment on learning and memory in rats. Forty healthy male Wistar rats (7 weeks old) were randomly assigned into 4 groups (N = 10 in each group): control (C) group, treadmill exercise (TE) group, enriched environment (EE) group and the TE + EE group. The Morris water maze (MWM) test was used to evaluate the learning and memory ability in all rats after eight weeks of exposure in the different conditions. Moreover, we employed enzyme-linked immunosorbent assay (ELISA) to determine the expression of brain-derived neurotrophic factor (BDNF) and receptor tyrosine kinase B (TrkB) in the rats. The data showed that the escape latency and the number of platform crossings were significantly better in the TE + EE group compared to the TE, EE or C groups (p < 0.05). In addition, there was upregulation of BDNF and TrkB in rats in the TE + EE group compared to those in the TE, EE or C groups (p < 0.05). Taken together, the data robustly demonstrate that the combination of TE + EE enhances learning and memory ability and upregulates the expression of both BDNF and TrkB in rats. Thus, the BDNF/TrkB signaling pathway might be modulating the effect of exercise and enriched environment in improving learning and memory ability in rats.


2021 ◽  
pp. 1-16
Author(s):  
Yassin Watson ◽  
Brenae Nelson ◽  
Jamie Hernandez Kluesner ◽  
Caroline Tanzy ◽  
Shreya Ramesh ◽  
...  

Background: Apolipoprotein E (APOE) genotypes typically increase risk of amyloid-β deposition and onset of clinical Alzheimer’s disease (AD). However, cognitive assessments in APOE transgenic AD mice have resulted in discord. Objective: Analysis of 31 peer-reviewed AD APOE mouse publications (n = 3,045 mice) uncovered aggregate trends between age, APOE genotype, gender, modulatory treatments, and cognition. Methods: T-tests with Bonferroni correction (significance = p <  0.002) compared age-normalized Morris water maze (MWM) escape latencies in wild type (WT), APOE2 knock-in (KI2), APOE3 knock-in (KI3), APOE4 knock-in (KI4), and APOE knock-out (KO) mice. Positive treatments (t+) to favorably modulate APOE to improve cognition, negative treatments (t–) to perturb etiology and diminish cognition, and untreated (t0) mice were compared. Machine learning with random forest modeling predicted MWM escape latency performance based on 12 features: mouse genotype (WT, KI2, KI3, KI4, KO), modulatory treatment (t+, t–, t0), mouse age, and mouse gender (male = g_m; female = g_f, mixed gender = g_mi). Results: KI3 mice performed significantly better in MWM, but KI4 and KO performed significantly worse than WT. KI2 performed similarly to WT. KI4 performed significantly worse compared to every other genotype. Positive treatments significantly improved cognition in WT, KI4, and KO compared to untreated. Interestingly, negative treatments in KI4 also significantly improved mean MWM escape latency. Random forest modeling resulted in the following feature importance for predicting superior MWM performance: [KI3, age, g_m, KI4, t0, t+, KO, WT, g_mi, t–, g_f, KI2] = [0.270, 0.094, 0.092, 0.088, 0.077, 0.074, 0.069, 0.061, 0.058, 0.054, 0.038, 0.023]. Conclusion: APOE3, age, and male gender was most important for predicting superior mouse cognitive performance.


2021 ◽  
Author(s):  
Ming Tian ◽  
Yuxia Wang ◽  
Degong Liu ◽  
Xiaoling Zhao

Abstract The current study aimed to explore the effect of docosahexaenoic acid (DHA) on the behavioral memory impairment caused by repeated anesthesia of sevoflurane in aged rats. A total of 54 Sprague‑Dawley (SD) aged rats were randomly divided into six groups: Blank control group (Control), sevoflurane group (Sev), DHA group (3g/kg), Sev + DHA (0.3g/kg) group, Sev + DHA (1g/kg) group and Sev + DHA (3g/kg) group. Morris water maze experiment was used to evaluate the learning and memory ability. Hematoxylin and eosin (H&E) staining was used to observe histological changes. The content of superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were detected. Immunohistochemistry and western blot analysis were used to determine the expression of proteins. Rats were indicated to exhibit prolonged escape latency following sevoflurane anesthesia. The number of times taken to cross the platform and the time for target quadrant stay were also demonstrated to be significantly reduced. Rats treated with different doses of DHA were revealed to exhibit reduced escape latency. The number of times taken to cross the platform and the time for target quadrant stay increased. Histopathological examination indicated that DHA treatment ameliorated the pathological change of the rats brain tissue. Furthermore, the expression of Nrf2 and HO-1 protein were demonstrated to be significantly increased. The present study revealed that DHA has a protective effect on learning and memory impairment in aged rats induced by repeated sevoflurane anesthesia, and the mechanism may be associated with the Nrf2/HO-1 signaling pathway.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ning Zhang ◽  
Wei Zhao ◽  
Zhen-Jie Hu ◽  
Sheng-Mei Ge ◽  
Yan Huo ◽  
...  

AbstractSepsis survivors present long-term cognitive deficits. The present study was to investigate the effect of early administration of high-dose vitamin C on cognitive function in septic rats and explore its possible cerebral protective mechanism. Rat sepsis models were established by cecal ligation and puncture (CLP). Ten days after surgery, the Morris water maze test was performed to evaluate the behavior and cognitive function. Histopathologic changes in the hippocampus were evaluated by nissl staining. The inflammatory cytokines, activities of antioxidant enzymes (superoxide dismutase or SOD) and oxidative products (malondialdehyde or MDA) in the serum and hippocampus were tested 24 h after surgery. The activity of matrix metalloproteinase-9 (MMP-9) and expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1(HO-1) in the hippocampus were measured 24 h after surgery. Compared with the sham group in the Morris water maze test, the escape latency of sepsis rats was significantly (P = 0.001) prolonged in the navigation test, whereas the frequency to cross the platform and the time spent in the target quadrant were significantly (P = 0.003) reduced. High-dose vitamin C significantly decreased the escape latency (P = 0.01), but increased the time spent in the target quadrant (P = 0.04) and the frequency to cross the platform (P = 0.19). In the CLP+ saline group, the pyramidal neurons were reduced and distributed sparsely and disorderly, the levels of inflammatory cytokines of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 in the serum and hippocampus were significantly increased (P = 0.000), the blood brain barrier (BBB) permeability in the hippocampus was significantly (P = 0.000) increased, the activities of SOD in the serum and hippocampus were significantly (P = 0.000 and P = 0.03, respectively) diminished while the levels of MDA in the serum and hippocampus were significantly (P = 0.007) increased. High-dose vitamin C mitigated hippocampus histopathologic changes, reduced systemic inflammation and neuroinflammation, attenuated BBB disruption, inhibited oxidative stress in brain tissue, and up-regulated the expression of nuclear and total Nrf2 and HO-1. High-dose vitamin C significantly (P < 0.05) decreased the levels of tumor necrosis factor- (TNF)-α, interleukin-6 (IL-6), MDA in the serum and hippocampus, and the activity of MMP-9 in the hippocampus, but significantly (P < 0.05) increased the levels of SOD, the anti-inflammatory cytokine (IL-10) in the serum and hippocampus, and nuclear and total Nrf2, and HO-1 in the hippocampus. In conclusion, high-dose vitamin C can improve cognition impairment in septic rats, and the possible protective mechanism may be related to inhibition of inflammatory factors, alleviation of oxidative stress, and activation of the Nrf2/HO-1 pathway.


Sign in / Sign up

Export Citation Format

Share Document