scholarly journals Stability with respect to coefficients of solution of difference schemes approximating initial boundary-value problems for semi-linear hyperbolic equations

Author(s):  
P. P. Matus ◽  
S. V. Lemeshevsky

The stability with respect to coefficients of solution of a difference scheme approximating the initial boundary-value problem for the one-dimensional semi-linear hyperbolic equation is studied. The estimates of the solutions of both differential and difference problems are obtained. In the domain of existence of the solution, the estimates for perturbation of the solution of a difference scheme with respect to perturbation of the coefficients of the equation are obtained. These estimates are consistent with the estimates for the differential problem. In all cases, the method of energy inequalities, the Bihari inequality and its mesh analogue are used.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Huashui Zhan

The paper studies the initial-boundary value problem of a porous medium equation with exponent variable. How to deal with nonlinear term with the exponent variable is the main dedication of this paper. The existence of the weak solution is proved by the monotone convergent method. Moreover, according to the different boundary value conditions, the stability of weak solutions is studied. In some special cases, the stability of weak solutions can be proved without any boundary value condition.


Acta Numerica ◽  
1993 ◽  
Vol 2 ◽  
pp. 199-237 ◽  
Author(s):  
J.L.M. van Dorsselaer ◽  
J.F.B.M. Kraaijevanger ◽  
M.N. Spijker

This article addresses the general problem of establishing upper bounds for the norms of the nth powers of square matrices. The focus is on upper bounds that grow only moderately (or stay constant) where n, or the order of the matrices, increases. The so-called resolvant condition, occuring in the famous Kreiss matrix theorem, is a classical tool for deriving such bounds.Recently the classical upper bounds known to be valid under Kreiss's resolvant condition have been improved. Moreover, generalizations of this resolvant condition have been considered so as to widen the range of applications. The main purpose of this article is to review and extend some of these new developments.The upper bounds for the powers of matrices discussed in this article are intimately connected with the stability analysis of numerical processes for solving initial(-boundary) value problems in ordinary and partial linear differential equations. The article highlights this connection.The article concludes with numerical illustrations in the solution of a simple initial-boundary value problem for a partial differential equation.


Author(s):  
Р.Р. Ашуров ◽  
А.Т. Мухиддинова

В настоящей работе исследуется начально-краевые задачи для гиперболических уравнений, эллиптическая часть которых имеет наиболее общий вид и определена в произвольной многомерной области (с достаточно гладкой границей). Установливаются требования на правую часть уравнения и начальные функции, при которых к рассматрываемую задачу применим классический метод Фурье. Другими словами, доказывается методом Фурье существование и единственность решения смешанной задачи и показана устойчивость найденного решения от данных задачи: от начальных функций и правой части уравнения. Введено понятие обобщенного решения и доказана теорема о его существования. Аналогичные результаты справедливы и для параболических уравнений. An initial-boundary value problem for a hyperbolic equation with the most general elliptic differential operator, defined on an arbitrary bounded domain, is considered. Uniqueness, existence and stability of the classical solution of the posed problem are proved by the classical Fourier method. Sufficient conditions for the initial function and for the right-hand side of the equation are indicated, under which the corresponding Fourier series converge absolutely and uniformly. The notion of a generalized solution is introduced and existence theorem is proved. Similar results are formulated for parabolic equations too.


Sign in / Sign up

Export Citation Format

Share Document