Initial boundary value problem for second order hyperbolic equations with general boundary conditions I

1981 ◽  
Vol 40 (1) ◽  
pp. 43-89 ◽  
Author(s):  
Gregory Eskin
Author(s):  
R.A. Virts ◽  
A.A. Papin ◽  
W.A. Weigant

The paper considers a model for filtering a viscous incompressible fluid in a deformable porous medium. The filtration process can be described by a system consisting of mass conservation equations for liquid and solid phases, Darcy's law, rheological relation for a porous medium, and the law of conservation of balance of forces. This paper assumes that the poroelastic medium has both viscous and elastic properties. In the one-dimensional case, the transition to Lagrange variables allows us to reduce the initial system of governing equations to a system of two equations for effective pressure and porosity, respectively. The aim of the work is a numerical study of the emerging initial-boundary value problem. Paragraph 1 gives the statement of the problem and a brief review of the literature on works close to this topic. In paragraph 2, the initial system of equations is transformed, as a result of which a second-order equation for effective pressure and the first-order equation for porosity arise. Paragraph 3 proposes an algorithm to solve the initial-boundary value problem numerically. A difference scheme for the heat equation with the righthand side and a Runge–Kutta second-order approximation scheme are used for numerical implementation.


Author(s):  
Alexander N. Polkovnikov

We consider initial boundary value problem for uniformly 2-parabolic differential operator of second order in cylinder domain in Rn with non-coercive boundary conditions. In this case there is a loss of smoothness of the solution in Sobolev type spaces compared with the coercive situation. Using by Faedo-Galerkin method we prove that problem has unique solution in special Bochner space


Author(s):  
Sharif E. Guseynov ◽  
Ruslans Aleksejevs ◽  
Jekaterina V. Aleksejeva

In the present paper, we propose an analytical approach for solving the 3D unsteady-state boundary-value problem for the second-order parabolic equation with the second and third types boundary conditions in two-layer rectangular parallelepipedic domain.


2018 ◽  
Vol 15 (02) ◽  
pp. 349-374 ◽  
Author(s):  
Elena Rossi

We consider four definitions of solution to the initial-boundary value problem (IBVP) for a scalar balance laws in several space dimensions. These definitions are extended to the same most general framework and then compared. The first aim of this paper is to detail differences and analogies among them. We focus then on the ways the boundary conditions are fulfilled according to each definition, providing also connections among these various modes. The main result is the proof of the equivalence among the presented definitions of solution.


Sign in / Sign up

Export Citation Format

Share Document