scholarly journals Influence of reconstruction parameters of positron emission tomograph scanning on the effect of partial volume of the pathological lesion

Author(s):  
E. V. Emelyanenko ◽  
I. G. Tarutin ◽  
P. A. Belobokov

In this work, the following tasks were solved: to perform a comparative analysis of data processing methods when calculating recovery factors; to evaluate the influence of time-of-flight technology and PSF function on the recovery factor and the forecast of recovery factor deviation for potential pathological foci with a diameter of 6–8 mm; to evaluate the influence of parameters of iterative reconstruction algorithms, Gaussian filter and axial filters on the recovery factor. The calculation of the recovery factors was carried out on the basis of quantitative characteristics obtained in the analysis of reconstructions of images of the IEC phantom with six spheres installed inside and filled with a radiopharmaceutical. Eight series of experiments with background / sphere activity ratios 1/3, 1/4, 1/6, 1/8, 1/12, 1/14, 1/16, 1/20 were carried out with the same concentration of activity in the spheres during each separate experiment. The forecast of the effect of the partial volume effect on lesions with a diameter of 6 to 8 mm was carried out, taking into account the used reconstruction algorithms. It is advisable to use the results obtained to harmonize diagnostic protocols for scanning with positron emission tomographs using the input parameters of reconstruction algorithms and filters, which will minimize the error in the quantitative assessment of a radiopharmaceutical when analyzing the dynamics of the development of a pathological process, as well as the response of pathology to therapy.

Nukleonika ◽  
2015 ◽  
Vol 60 (4) ◽  
pp. 745-748 ◽  
Author(s):  
Wojciech Krzemień ◽  
Mateusz Bała ◽  
Tomasz Bednarski ◽  
Piotr Białas ◽  
Eryk Czerwiński ◽  
...  

Abstract The Jagiellonian Positron Emission Tomograph (J-PET) collaboration is developing a prototype time of flight (TOF)-positron emission tomograph (PET) detector based on long polymer scintillators. This novel approach exploits the excellent time properties of the plastic scintillators, which permit very precise time measurements. The very fast field programmable gate array (FPGA)-based front-end electronics and the data acquisition system, as well as low- and high-level reconstruction algorithms were specially developed to be used with the J-PET scanner. The TOF-PET data processing and reconstruction are time and resource demanding operations, especially in the case of a large acceptance detector that works in triggerless data acquisition mode. In this article, we discuss the parallel computing methods applied to optimize the data processing for the J-PET detector. We begin with general concepts of parallel computing and then we discuss several applications of those techniques in the J-PET data processing.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
F. Gallivanone ◽  
C. Canevari ◽  
L. Gianolli ◽  
C. Salvatore ◽  
P. A. Della Rosa ◽  
...  

We have developed, optimized, and validated a method for partial volume effect (PVE) correction of oncological lesions in positron emission tomography (PET) clinical studies, based on recovery coefficients (RC) and on PET measurements of lesion-to-background ratio (L/Bm) and of lesion metabolic volume. An operator-independent technique, based on an optimised threshold of the maximum lesion uptake, allows to define an isocontour around the lesion on PET images in order to measure both lesion radioactivity uptake and lesion metabolic volume. RC are experimentally derived from PET measurements of hot spheres in hot background, miming oncological lesions. RC were obtained as a function of PET measured sphere-to-background ratio and PET measured sphere metabolic volume, both resulting from the threshold-isocontour technique. PVE correction of lesions of a diameter ranging from 10 mm to 40 mm and for measuredL/Bmfrom 2 to 30 was performed using measured RC curves tailored at answering the need to quantify a large variety of real oncological lesions by means of PET. Validation of the PVE correction method resulted to be accurate (>89%) in clinical realistic conditions for lesion diameter > 1 cm, recovering >76% of radioactivity for lesion diameter < 1 cm. Results from patient studies showed that the proposed PVE correction method is suitable and feasible and has an impact on a clinical environment.


2021 ◽  
Vol 11 (14) ◽  
pp. 6460
Author(s):  
Fabio Di Martino ◽  
Patrizio Barca ◽  
Eleonora Bortoli ◽  
Alessia Giuliano ◽  
Duccio Volterrani

Quantitative analyses in nuclear medicine are increasingly used, both for diagnostic and therapeutic purposes. The Partial Volume Effect (PVE) is the most important factor of loss of quantification in Nuclear Medicine, especially for evaluation in Region of Interest (ROI) smaller than the Full Width at Half Maximum (FWHM) of the PSF. The aim of this work is to present a new approach for the correction of PVE, using a post-reconstruction process starting from a mathematical expression, which only requires the knowledge of the FWHM of the final PSF of the imaging system used. After the presentation of the theoretical derivation, the experimental evaluation of this method is performed using a PET/CT hybrid system and acquiring the IEC NEMA phantom with six spherical “hot” ROIs (with diameters of 10, 13, 17, 22, 28, and 37 mm) and a homogeneous “colder” background. In order to evaluate the recovery of quantitative data, the effect of statistical noise (different acquisition times), tomographic reconstruction algorithm with and without time-of-flight (TOF) and different signal-to-background activity concentration ratio (3:1 and 10:1) was studied. The application of the corrective method allows recovering the loss of quantification due to PVE for all sizes of spheres acquired, with a final accuracy less than 17%, for lesion dimensions larger than two FWHM and for acquisition times equal to or greater than two minutes.


Sign in / Sign up

Export Citation Format

Share Document