Solid Waste Management of Dehradun City based on its Physical and Calorific Energy Potential

Author(s):  
Shailesh Kumar Gupta ◽  
Yashveer Jayara ◽  
Yeshi Choden
2020 ◽  
Vol 38 (12) ◽  
pp. 1379-1388
Author(s):  
Uzma Atta ◽  
Majid Hussain ◽  
Riffat Naseem Malik

The present study quantified environmental impacts of the Rawalpindi Waste Management Company (RWMC) value chain in Pakistan for three consecutive years (2015–2018) using a cradle-to-grave life cycle assessment (LCA) approach. Energy potential from municipal solid wastes (MSW) was also predicted till the year 2050. Based on a functional unit of 1.0 tonne of MSW, the study analyzed inputs and outputs data through SimaPro v.8.3 applying CML 2000 methodology and cumulative exergy demand indicator (CExD). LCA revealed that operational activities of RWMC mainly contributed to marine aquatic ecotoxicity, i.e. 8962.83 kg1,4-DBeq t−1 MSW, indicating long-range transport of petrogenic hydrocarbons from the company’s fleet gasoline combustion. Similarly, human toxicity potential, global warming potential and freshwater aquatic ecotoxicity potential were also found to be significant, i.e. 18.14 kg1,4-DBeq t−1 MSW, 15.79 kgCO2eq t−1 MSW and 6.22 kg1,4-DBeq t−1 MSW, respectively. The CExD showed that company activities consumed 827.14 MJ t−1 MSW exergy from nature, and gasoline used in MSW transport was the most exergy-intensive process, using 634.47 MJ exergy per tonne MSW disposed of. Projections for energy generation potential up to the year 2050 showed that MSW of Rawalpindi city will have the potential to produce 3901 megawatt of energy to fulfill the energy needs of the country. Possible stratagems to reduce environmental impacts from the municipal solid waste management (MSWM) value chain of RWMC include curtailing dependency on petrogenic and fossil fuels in mobile sources, optimization of waste collection methods and dumping routes, inclining attention toward suitable wastes-to-energy conversion technology and opting for a holistic approach of MSWM in Pakistan.


2021 ◽  
Vol 22 (1&2) ◽  
pp. 27-33
Author(s):  
Yeshi Choden ◽  
Tashi Tenzin ◽  
Karchung K. ◽  
Karma Norbu ◽  
Sangay Wangmo ◽  
...  

Conversion of Solid waste into energy is the most resourceful process to combat landfill saturation and environmental impression. Bhutan, with an exponential rise in the waste production, Waste to Energy (WTE) conversion is an alternative solution for municipal solid waste management (MSW). The study for MSW composition and its energy potential analysis for Memelakha (Thimphu) and Pekarshing (Phuntsholing) landfills was done to resolve the waste management challenges in the country. The standard number of samples from two dumpsites were used to analyze for the waste characterization (waste composition, proximate analysis, chemical analysis) and high heating value (HHV) of MSW. MSW of two landfills showed that the main elemental constituents were Carbon and Oxygen with 17.26% and 9.97% by mass respectively for Pekarshing and 16.52% (Carbon) and 11.07% (Oxygen) by mass for Memelakha landfill. Based on the physio-chemical analysis of MSW, the average calorific HHV of MSW obtained were 10.028 MJ/kg (26.04% of coal energy) for Pekarshing dumpsite and 9.6 MJ/kg (24.94% of coal energy) for Memelakha. The analysis showed that by the year 2050 Memelakha landfill has the potential to generate the power of 8.85 Megawatt (MW) and 1.44 Megawatt (MW) for Pekarshing. For (WTE) conversion, incineration, pyrolysis, and gasification technologies are found suitable based on the current composition MSW of Bhutan. Furthermore, in terms of energy efficiency and percentage of wastage, the gasification process was the most feasible method for WTE conversion at two locations with a waste volume reduction of 80 to 90 percent at the landfill.


2012 ◽  
Vol 2 (12) ◽  
pp. 176-177
Author(s):  
N. Sri Gokilavani N. Sri Gokilavani ◽  
◽  
Dr.D.Prabhakaran Dr.D.Prabhakaran ◽  
Dr. T. Kannadasan Dr. T. Kannadasan

Sign in / Sign up

Export Citation Format

Share Document