aquatic ecotoxicity
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 26)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
Vol 13 (24) ◽  
pp. 13515
Author(s):  
Lahiba Imtiaz ◽  
Sardar Kashif-ur-Rehman ◽  
Wesam Salah Alaloul ◽  
Kashif Nazir ◽  
Muhammad Faisal Javed ◽  
...  

This study presents a life cycle impact assessment of OPC concrete, recycled aggregate concrete, geopolymer concrete, and recycled aggregate-based geopolymer concrete by using the mid-point approach of the CML 2001 impact-assessment method. The life cycle impact assessment was carried out using OpenLCA software with nine different impact categories, such as global warming potential, acidification potential, eutrophication potential, ozone depletion potential, photochemical oxidant formation, human toxicity, marine aquatic ecotoxicity, and freshwater and terrestrial aquatic ecotoxicity potential. Subsequently, a contribution analysis was conducted for all nine impact categories. The analysis showed that using geopolymer concrete in place of OPC concrete can reduce global warming potential by up to 53.7%. Further, the use of geopolymer concrete represents the reduction of acidification potential and photochemical oxidant formation in the impact categories, along with climate change. However, the potential impacts of marine aquatic ecotoxicity, freshwater aquatic ecotoxicity, human toxicity, eutrophication potential, ozone depletion potential, and terrestrial aquatic ecotoxicity potential were increased using geopolymer concrete. The increase in these impacts was due to the presence of alkaline activators such as sodium hydroxide and sodium silicate. The use of recycled aggregates in both OPC concrete and geopolymer concrete reduces all the environmental impacts.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6589
Author(s):  
Ahmed Khater ◽  
Dong Luo ◽  
Moustafa Abdelsalam ◽  
Jianxun Ma ◽  
Mohamed Ghazy

Lignin and glass fiber were used as additives to improve the quality of road pavements and minimize moisture damage and cracking at low temperatures on asphalt pavement, according to a previous laboratory study. The aim of this paper is to make a significant contribution to the environmental assessment of the construction of road pavements using four types of asphalt mixtures based on the life cycle assessment (LCA) methodology according to the requirements of ISO 14040, considering the impact of raw material extraction, asphalt mixture manufacturing, transportation, and wearing surface construction. The results of the environmental assessment showed that all studied asphalt mixtures do not offer any improvement in all impact categories, and three modified asphalt mixtures have a slight negative effect in all impact categories. The composite mixture has the highest negative effect of the studied three modified asphalt mixtures in all categories except in the marine aquatic ecotoxicity potential category and freshwater aquatic ecotoxicity potential category, where the lignin modified asphalt mixture has the highest negative effect in these two categories but has the best environmental impacts on most of other impact categories. Furthermore, the negative effect caused by composite asphalt mixtures is minimal and thus can be used to improve the overall performance of asphalt pavement.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4552
Author(s):  
Patrycja Bałdowska-Witos ◽  
Izabela Piasecka ◽  
Józef Flizikowski ◽  
Andrzej Tomporowski ◽  
Adam Idzikowski ◽  
...  

The article characterizes selected issues related to the method of performing environmental impact analyses. Particular attention was paid to the need for identifying environmental effects associated with the process of shaping beverage bottles. This study concerns the analysis of selected stages of the machine’s life cycle environmental impact in the specific case of the blow molding machine used in the production of bottles. Life cycle assessment analysis was performed using the SimaPro 8.4.0 software (The Dutch Company Pre Consultants). The CML 2 and ReCiPe2016 methods were chosen to interpret the lists of chemical emissions. Impact categories specific to the CML 2 model are: abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation. Among all the considered impact categories, marine aquatic ecotoxicity was characterized by the highest level of potential harmful effects occurring during the bottle production process. A new aspect of the research is to provide updated and more detailed geographic data on Polish bottle production.


2021 ◽  
Vol 13 (11) ◽  
pp. 6082
Author(s):  
Zahra Payandeh ◽  
Ahmad Jahanbakhshi ◽  
Tarahom Mesri-Gundoshmian ◽  
Sean Clark

Eco-efficiency has become a cornerstone in improving the environmental and economic performance of farms. The joint use of life cycle assessment (LCA) and data envelopment analysis (DEA), known as LCA + DEA methodology, is an expanding area of research in this quest. LCA estimates the environmental impacts of the products or services, while DEA evaluates their efficiency, providing targets and benchmarks for the inefficient ones. Because energy consumption and environmental quality are highly interdependent, we carried out a study to examine energy efficiency and environmental emissions associated with rain-fed barley farms in Kermanshah Province, Iran. Fifty-four rain-fed barley farms were randomly selected, and production data were collected using questionnaires and interviews. DEA and LCA were used to quantify and compare environmental indicators before and after efficiency improvements were applied to the farms. To accomplish this, efficient and inefficient farms were identified using DEA. Then environmental emissions were measured again after inefficient farms reached the efficiency limit through management improvements. The results showed that by managing resource use, both energy consumption and environmental emissions can be reduced without yield loss. The initial amount of energy consumed averaged 13,443 MJ/ha while that consumed in the optimal state was determined to be 12,509 MJ/h, resulting in a savings of 934 MJ/ha. Based on the results of DEA, reductions in nitrogen fertilizer, diesel fuel, and phosphate fertilizer offered the greatest possibilities for energy savings. Combining DEA and LCA showed that efficient resource management could reduce emissions important to abiotic depletion (fossil fuels), human toxicity, marine aquatic ecotoxicity, global warming (GWP100a), freshwater aquatic ecotoxicity, and terrestrial ecotoxicity. This study contributes toward systematically building knowledge about crop production with the joint use of LCA + DEA for eco-efficiency assessment.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1956
Author(s):  
Damien Milliasseau ◽  
Jelena Jeftić ◽  
Freddy Pessel ◽  
Daniel Plusquellec ◽  
Thierry Benvegnu

The present article describes the one-pot synthesis of double- and single-tailed surfactants by a cascade process that involves the hydrolysis/butanolysis of pectins into butyl galacturonate monosaccharides followed by transesterification/transacetalisation processes with fatty alcohols, and subsequent aqueous basic and acid treatments. The cascade mode allows the depolymerisation to proceed more efficiently, and the purification conditions are optimised to make the production of single-tailed surfactants more manufacturable. These products in a pure form or as mixtures with alkyl glycosides resulting from butanolysis and transglycosylation of pectin-derived hexoses, exhibit attractive surface-tension properties, especially for the n-oleyl ᴅ-galactosiduronic acid products. In addition, a readily biodegradability and an absence of aquatic ecotoxicity are shown for the galacturonic acid derivatives possessing an oleyl alkyl chain at the anomeric position.


2021 ◽  
Vol 13 (5) ◽  
pp. 2458
Author(s):  
Alejandra Balaguera ◽  
Jaume Alberti ◽  
Gloria I. Carvajal ◽  
Pere Fullana-i-Palmer

Roads with low traffic volume link rural settlements together and connect them with urban centres, mobilising goods and agricultural products, and facilitating the transportation of people. In Colombia, most of these roads are in poor conditions, causing social, economic, and environmental problems, and significantly affecting the mobility, security, and economic progress of the country and its inhabitants. Therefore, it is essential to implement strategies to improve such roads, keeping in mind technical, economic, and environmental criteria. This article shows the results of the application of the environmental life cycle assessment—LCA—to sections of two low-traffic roads located in two different sites in Colombia: one in the Urrao area (Antioquia), located in the centre of the country; and another in La Paz (Cesar), located in the northeast of the country. Each segment was stabilised with alternative materials such as brick dust, fly ash, sulfonated oil, and polymer. The analysis was carried out in three stages: the first was the manufacture of the stabiliser; the second included preliminary actions that ranged from the search for the material to its placement on site; and the third was the stabilisation process, which included the entire application process, from the stabiliser to the road. The environmental impacts are mainly found in the manufacture of stabilisers (60% of the total), for sulfonated oil or polymer, due to the different compounds used during production, before their use as stabilisers. The impact categories with the greatest influence were abiotic depletion potential (ADP), global warming potential (GWP) and terrestrial ecotoxicity potential (TETP). For the stabilisation stage (impact between 40% and 99%), ash and brick dust have the highest impacts. The impact categories most influenced in this stage were: acidification potential (AP), freshwater aquatic ecotoxicity potential (FAETP), human toxicity potential (HTP), marine aquatic ecotoxicity potential (MAETP) and photochemical ozone creation potential (POCP).


2021 ◽  
Vol 100 (1) ◽  
pp. 30-35
Author(s):  
Larisa M. Sosedova ◽  
Evgeniy A. Titov ◽  
Mikhail A. Novikov ◽  
Irina A. Shurygina ◽  
Mikhail G. Shurygin

This review contains analysis and generalization of data about aquatic ecotoxicity of metal nanoparticles study. This study showed the effect of their impact on the viability of protozoa, algae, microbial communities. A multi-level approach proves to be important as it considers the main characteristics of the studied materials: solubility, agglomeration, degradation. The transformation in the aquatic environment is important in the study of aquatic ecotoxicity. For assessing the state of environment in ecotoxicological experiments, the Great Daphnia (Daphnia magna) was used as a critical organism of the freshwater ecosystem, due to its high sensitivity to environmental pollution, small body size, and short lifespan. In this regard, numerous studies on the effect of nanoparticles on the state of aquatic ecosystem are carried out on Daphnia magna. The review presents some methodological approaches to test the toxicity of nanoparticles in aquatic environment and assessing their stability. It is proposed to carry out a total assessment of the effect based on the content of pollutants in water with different toxic potentials, given that organisms, including aquatic organisms, are rarely exposed to certain chemicals. A promising approach to the assessment of cytotoxicity is high-throughput screening (HTS), which offers the opportunity to quickly test the effects of nanoparticles on bacteria in parallel in several concentrations. Algae are the most important participants in ecosystem and main components of the food chain. It allows recommending them as a marker when monitoring the environmental pollution by metal nanoparticles. Particular attention is paid to perspectives for further wider use of nanostructured products as adsorbents in wastewater treatment and recultivation processes. Search and selection of sources for review carried out in open databases, including PubMed, Scopus, Google Scholar and RSCI (Russian Science Citation Index) for 2007 - 2018 period.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Yves Ndizeye ◽  
Niu Dongjie ◽  
Mycline Umuhoza ◽  
Stacey Head ◽  
Faith Mulwa ◽  
...  

Over the past few decades, the life cycle assessment (LCA) has been established as a critical tool for evaluating environmental issues of chemical processes and material cycles. Plastic bottles are the most used materials for packaging beverages and other liquids. In Rubavu, wasted plastic bottles end their lives in Rutagara. This is an open dumpsite that is home to all of the different types of generated waste of Rubavu city, and its management is alarming. This study analyses the impact on the environment associated with the existing plastic bottle waste pathways in Rubavu, Rwanda, from the cradle to the grave perspective until the other process in Nairobi Kenya, as an extended process. Questionnaires, Interviews, Literature: scientific papers, government reports and internet websites were used through this study to get both primary and secondary data. Open LCA CML (baseline) method was applied to analyze the environmental impacts caused by plastic bottles during their management, focusing on its parameters conspicuously: acidification potential, climate change (GWP100), depletion of abiotic resources (elements, ultimate reserves), depletion of abiotic resources (fossil fuels), eutrophication (generic), freshwater aquatic ecotoxicity( FAETP inf), human toxicity (HTP inf), marine aquatic ecotoxicity (MAETP inf), ozone layer depletion (ODP steady-state), photochemical oxidation (high NOx), terrestrial ecotoxicity (TETP inf). Two alternatives to these were also analysed: sanitary landfill, and recycling, described as scenarios 1 and 2. In this framework, the result of LCA shows that the use of landfill was found to have the highest adverse environmental effects, and this process has resulted in high global warming potential due to plastic bottle packaging waste decomposition effects as they release methane and ethylene, which contributes significantly to the greenhouse gases.


Sign in / Sign up

Export Citation Format

Share Document