Modelagem e Simulação de um VANT Convertível Tilt-rotor

Author(s):  
Daniel Neri ◽  
Jonatan Campos ◽  
Sergio Esteban ◽  
Julio E. Normey-rico ◽  
Guilherme V. Raffo
Keyword(s):  
2021 ◽  
Vol 1925 (1) ◽  
pp. 012041
Author(s):  
K S Lelkov ◽  
D V Ulyanov ◽  
D A Surkov ◽  
A N Ushakov

Author(s):  
Kun Chen ◽  
Zhiwei Shi ◽  
Shengxiang Tong ◽  
Yizhang Dong ◽  
Jie Chen

There is an obvious aerodynamic interference problem that occurs for a quad tilt rotor in near-ground hovering or in the conversion operating condition. This paper presents an aerodynamic interference test of the quad tilt rotor in a wind tunnel. A 1:35 scale model of the quad tilt rotor is used in this test. To substitute for the ground, a moveable platform is designed in a low-speed open-loop wind tunnel to simulate different flight altitudes of the quad tilt rotor in hovering or forward flight. A rod six-component force balance is used to measure the loads on the aircraft, and the flow field below the airframe is captured using particle image velocimetry. The experimental results show that the ground effect is significant when the hover height above the ground is less than the rotor diameter of the quad tilt rotor aircraft, and the maximum upload of the airframe is approximately 12% of the total vertical thrust with the appearance of obvious fountain flow. During the conversion operating condition, the upload of the airframe is reduced compared with that in the hovering state, which is affected by rotor wake and incoming flow. The aerodynamic interference test results of the quad tilt rotor aircraft have important reference value in power system selection, control system design, and carrying capacity improvement with the advantage of ground effect.


1977 ◽  
Author(s):  
James H. Brown ◽  
H. Kipling Edenborough ◽  
David D. Few
Keyword(s):  

2016 ◽  
Vol 842 ◽  
pp. 251-258 ◽  
Author(s):  
Muhammad Rafi Hadytama ◽  
Rianto A. Sasongko

This paper presents the flight dynamics simulation and analysis of a tilt-rotor vertical takeoff and landing (VTOL) aircraft on transition phase, that is conversion from vertical or hover to horizontal or level flight and vice versa. The model of the aircraft is derived from simplified equations of motion comprising the forces and moments working on the aircraft in the airplane's longitudinal plane of motion. This study focuses on the problem of the airplane's dynamic response during conversion phase, which gives an understanding about the flight characteristics of the vehicle. The understanding about the flight dynamics characteristics is important for the control system design phase. Some simulation results are given to provide better visualization about the behaviour of the tilt-rotor. The simulation results show that both transition phases are quite stable, although an improved stability can give better manoeuver and attitude handling. Improvement on the simulation model is also required to provide more accurate and realistic dynamic response of the vehicle.


Author(s):  
Muhammad Shahzaib Atif ◽  
Zarrar Haider ◽  
Malik Muhammad Zohaib ◽  
Mirza Ali Raza

Sign in / Sign up

Export Citation Format

Share Document