scholarly journals The Effect of Some Vegetable Oils Added to Dairy Calf Rations on In Vitro Feed Value and Enteric Methane Production

2021 ◽  
Vol 2 (1) ◽  
pp. 1-6
Author(s):  
Ali Kaya ◽  
◽  
Adem Kaya ◽  
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


2003 ◽  
Vol 2003 ◽  
pp. 163-163
Author(s):  
D. K. Lovett ◽  
A. Bortolozzo ◽  
P. O’Kiely ◽  
P. Conaghan ◽  
F. P. O’Mara

Increasing animal productivity increases daily enteric methane (CH4) emissions but reduces CH4 output per unit of animal production. Irish livestock production systems are characterised by a high dependence on grazed pasture. Increased nitrogen (N) fertiliser application can increase animal productivity through increased intake. The objective of this trial was to assess the effect of N level application and pasture maturity on in vitro methane production.


2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 99-100
Author(s):  
S. Taylor ◽  
I. M. Ogunade ◽  
D. Kim ◽  
K. G. Arriola ◽  
A. T. Adesogan

2021 ◽  
Vol 275 ◽  
pp. 114878
Author(s):  
M.M.D. Castro ◽  
M.A. Cardoso ◽  
E. Detmann ◽  
M.A. Fonseca ◽  
C.B. Sampaio ◽  
...  

Author(s):  
Alireza Bayat ◽  
Kevin J. Shingfield

Since ruminants are capable of utilizing fibrous feeds not digested by mono-gastrics, they represent a valuable natural resource for meeting future increases in global food supply. Ruminants have both local (nitrogen and phosphorus pollutions) and global (greenhouse gases, GHG) environmental footprints. It is estimated that the livestock sector is responsible for 18% of global anthropogenic GHG emissions. Losses of methane represent 30 to 50% of total GHG from livestock production, with the contribution from ruminants accounting for about 80%. Due to the concerns of increases in GHG emissions into the environment and potential effects on global warming, there is a need to develop strategies to lower methane emissions from ruminants as part of an overall requirement to improve the sustainability of ruminant food production systems. Methane is produced as a by-product of anaerobic fermentation in the reticulo-rumen, largely due to the activity of methanogenic archaea. Recent research has focused on the potential of novel feed ingredients (probiotics, ionophores, acetogen-based inoculants, bacteriocins, organic acids and plant extracts) or vaccines to lower hydrogen production and/or increase the transfer and utilization of metabolic hydrogen in the production of end-products other than methane in the rumen. Research to date has provided evidence that dietary supplements of plant or marine oils, oilseeds, specific fatty acids and condensed tannins, as well as defaunation, increases in production level or decreases in the proportion of forage in the diet may lower enteric methane production. Even though dietary lipid supplements can be used to lower methane output, in high amounts a decrease in intake and milk production can be expected. While further investigations have demonstrated the efficacy of specific agents on methanogenesis in vitro, the effects have not been substantiated in vivo. Altering the ratio of H2 /non-H2 producing fibrolytic bacteria to lower methanogenesis without altering fibre digestion has been demonstrated under experimental conditions. Furthermore, non-H2 producing communities have been characterized in the digesta of certain ruminant species. In contrast, stimulating acetogenesis by inoculation with rumen acetogens or non-rumen acetogens have met with limited success in vitro and in vivo. Research has also concentrated on stimulating the ultilisation of metabolic hydrogen by sulphate reducing bacteria, but there remains concern over the toxicity of H2S in the host ruminant. Investigations of nitrate reducing bacteria which produce more NH3 and less toxic nitrite, have indicated promising results. Increasing the number of capnophilic bacteria which use CO2 and H2 to produce organic acids, succinic acid in particular, may decrease methane production. In isolation, several approaches have been shown to decrease enteric methane emissions, but often part of the changes observed are related to lowered organic matter digestion in the rumen. However, lowering methane production per unit product over the lifetime of an animal should be regarded as the central goal to decrease GHG from ruminant livestock systems. This highlights the need for integrated solutions to improve digestive efficiency, as well as fertility and health. In conclusion, any prospective solution to lower on-farm GHG emissions must be practical, cost effective and have no adverse effect on the profitability of ruminant meat and milk production. Recent research has indicated significant potential, but none of the strategies tested thus far satisfy all of the necessary criteria for immediate implementation.


2016 ◽  
Vol 56 (3) ◽  
pp. 282 ◽  
Author(s):  
Robert D. Kinley ◽  
Rocky de Nys ◽  
Matthew J. Vucko ◽  
Lorenna Machado ◽  
Nigel W. Tomkins

Livestock feed modification is a viable method for reducing methane emissions from ruminant livestock. Ruminant enteric methane is responsible approximately to 10% of greenhouse gas emissions in Australia. Some species of macroalgae have antimethanogenic activity on in vitro fermentation. This study used in vitro fermentation with rumen inoculum to characterise increasing inclusion rates of the red macroalga Asparagopsis taxiformis on enteric methane production and digestive efficiency throughout 72-h fermentations. At dose levels ≤1% of substrate organic matter there was minimal effect on gas and methane production. However, inclusion ≥2% reduced gas and eliminated methane production in the fermentations indicating a minimum inhibitory dose level. There was no negative impact on substrate digestibility for macroalgae inclusion ≤5%, however, a significant reduction was observed with 10% inclusion. Total volatile fatty acids were not significantly affected with 2% inclusion and the acetate levels were reduced in favour of increased propionate and, to a lesser extent, butyrate which increased linearly with increasing dose levels. A barrier to commercialisation of Asparagopsis is the mass production of this specific macroalgal biomass at a scale to provide supplementation to livestock. Another area requiring characterisation is the most appropriate method for processing (dehydration) and feeding to livestock in systems with variable feed quality and content. The in vitro assessment method used here clearly demonstrated that Asparagopsis can inhibit methanogenesis at very low inclusion levels whereas the effect in vivo has yet to be confirmed.


Sign in / Sign up

Export Citation Format

Share Document