asparagopsis taxiformis
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 29)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
pp. 130499
Author(s):  
Bradley Ridoutt ◽  
Sigrid A. Lehnert ◽  
Stuart Denman ◽  
Edward Charmley ◽  
Robert Kinley ◽  
...  

2021 ◽  
Author(s):  
Yue Jia ◽  
Birgit Quack ◽  
Robert D. Kinley ◽  
Ignacio Pisso ◽  
Susann Tegtmeier

Abstract. To mitigate the rumen enteric methane (CH4) produced by ruminant livestock, Asparagopsis taxiformis is proposed as an additive to ruminant feed. During the cultivation of Asparagopsis taxiformis in the sea or in terrestrial based systems, this macroalgae, like most seaweeds and phytoplankton, produces a large amount of bromoform (CHBr3), which may contribute to ozone depletion once released into the atmosphere. In this study, the impact of CHBr3 on the stratospheric ozone layer resulting from potential emissions from proposed Asparagopsis cultivation in Australia is assessed by weighting the emissions of CHBr3 with the ozone depletion potential (ODP), which is traditionally defined for long-lived halogens but has been also applied to very short lived substances (VSLSs). An annual yield of ~3.5 × 104 Mg dry weight (DW) is required to meet the needs of 50 % of the beef feedlot and dairy cattle in Australia. Our study shows that the intensity and impact of CHBr3 emissions varies dependent on location and cultivation scenarios. Of the proposed locations, tropical farms near the Darwin region are associated with largest CHBr3 ODP values. However, farming of Asparagopsis using either ocean or terrestrial cultivation systems at any of the proposed locations does not have potential to impact the ozone layer. Even if all Asparagopsis farming was performed in Darwin, the emitted CHBr3 would amount to less than 0.016 % of the global ODP-weighted emissions. The remains are relatively small even if the intended annual yield in Darwin is scaled by a factor 30 to meet the global requirements, which will increase the global ODP-weighted emissions by 0.48 %


2021 ◽  
Vol 1 ◽  
pp. 1-None
Author(s):  
Rafael Muñoz-Tamayo ◽  
Juana C. Chagas ◽  
Mohammad Ramin ◽  
Sophie J. Krizsan

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 183-183
Author(s):  
Byeng Ryel Min ◽  
Giusi Genovese ◽  
Lana Castleberry ◽  
Cathy Lockard ◽  
Heidi Waldrip ◽  
...  

Abstract Ruminal methane (CH4) production results from carbohydrate fermentation by ruminal microbiota (methanogens) to produce CH4, volatile fatty acids (VFA), carbon dioxide (CO2), nitrous oxide (N2O), and hydrogen (H2) in a reduction pathway. The aims of this study were to assess the effects of two red seaweed (RSW) species (Asparagopsis taxiformis and A. armata; collected from Messina, Italy). The two RSW were identified by DNA barcoding and genetic data were deposited in BOLD Systems (REAPP006-21, REAPP004-21, respectively). The two RSW were used at dietary inclusion levels (0, 2, and 4% as-fed basis) in an anaerobic in vitro study (39°C for 48-h) to examine greenhouse gas (GHG) production and VFA profiles. Gases were collected using an ANKOM Gas Production system and analyzed for CH4 and N2O by gas chromatography. Asparagopsis taxiformis contained higher levels of bromoform (201 vs. 7.0 mg/kg DM), iodine (4820 vs. 3260 ppm), and crude protein (16 vs. 15.6% DM), than A. armata, which contained higher levels of acid detergent fiber (ADF; 7.7 vs. 19.0%) and neutral detergent fiber (NDF; 13.2 vs. 19.2%), respectively. RSW supplementation increased total gas, butyrate and valerate production (P < 0.01), while production of CH4 (mg/g DM), acetate (A), propionate (P), A/P ratios and in vitro dry matter digestibility (IVDMD; % DM) were reduced (P < 0.01) as RSW supplementation increased. In the presence of A. taxiformis, production of N2O (µg/g DM), tended to be less (P = 0.1) at 2% DM, but increased (P < 0.01) N2O production with A. armata at the 2 and 4% DM. Therefore, it may be possible to suppress methanogenesis both directly and indirectly by addition of RSW. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and dietary substrate interactions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0249053
Author(s):  
Ian J. Lean ◽  
Helen M. Golder ◽  
Tianna M. D. Grant ◽  
Peter J. Moate

There has been considerable interest in the use of red seaweed, and in particular Asparagopsis taxiformis, to increase production of cattle and to reduce greenhouse gas emissions. We hypothesized that feeding seaweed or seaweed derived products would increase beef or dairy cattle performance as indicated by average daily gain (ADG), feed efficiency measures, milk production, and milk constituents, and reduce methane emissions. We used meta-analytical methods to evaluate these hypotheses. A comprehensive search of Google Scholar, Pubmed and ISI Web of Science produced 14 experiments from which 23 comparisons of treatment effects could be evaluated. Red seaweed (Asparagopsis taxiformis) and brown seaweed (Ascophyllum nodosum) were the dominant seaweeds used. There were no effects of treatment on ADG or dry matter intake (DMI). While there was an increase in efficiency for feed to gain by 0.38 kg per kg [standardized mean difference (SMD) = 0.56; P = 0.001] on DerSimonian and Laird (D&L) evaluation, neither outcome was significant using the more rigorous robust regression analysis (P >0.06). The type of seaweed used was not a significant covariable for ADG and DMI, but A. nodosum fed cattle had lesser feed to gains efficiency compared to those fed A. taxiformis. Milk production was increased with treatment on weighted mean difference (WMD; 1.35 ± 0.44 kg/d; P <0.001); however, the SMD of 0.45 was not significant (P = 0.111). Extremely limited data suggest the possibility of increased percentages of milk fat (P = 0.040) and milk protein (P = 0.001) on (D&L) WMD evaluation. The limited data available indicate dietary supplementation with seaweed produced a significant and substantial reduction in methane yield by 5.28 ± 3.5 g/kg DMI (P = 0.003) on D&L WMD evaluation and a D&L SMD of −1.70 (P = 0.001); however, there was marked heterogeneity in the results (I2 > 80%). In one comparison, methane yield was reduced by 97%. We conclude that while there was evidence of potential for benefit from seaweed use to improve production and reduce methane yield more in vivo experiments are required to strengthen the evidence of effect and identify sources of heterogeneity in methane response, while practical applications and potential risks are evaluated for seaweed use.


Author(s):  
Emad A. Shalaby ◽  
Sanaa M. M. Shanab

Aim and objective: The discovery and development of new natural antiviral compounds which exhibit various antiviral activities are required. The aim of this investigation is to assess the potential use of the red seaweed Asparagopsis taxiformis as a new source of anti H5N1 agent. Methods: The seaweed was collected from Marsa Matrouh, Mediterranean Sea, Egypt during spring season, the effects of successive extracts and the pure compounds from the investigated alga on H5N1 virus were performed using plaque reduction assay. In addition, the mechanism of action of promising extract on the virus adsorption and replication was determined. Chromatographic and spectroscopic analyses were used for the identification of chemical structure of active compound(s) isolated from the studied seaweed. Results: The obtained results showed that petroleum ether and water algal extracts exhibited high antiviral activity (>99.9%) and the mode of action of extracts was not correlated with virus replication but with its adsorption process.The isolated pure compound was identified as 6-methyl-Δ22-stigmasterol-2, 3 di acetate and its antiviral activity (for H5N1)was tested. Pure compound showed antiviral activity reached 56% at 100 µg/ml. Conclusion: The obtained results suggests that crude extracts and isolated active compound from A. taxiformis has the capacity to protect people against pandemic H5N1preventing virus adsorption to the human host cells. Recommendation for testing the extracts and pure compounds from the studied seaweed as potential inhibitor of COVID-19.                     Peer Review History: Received 16 March 2021; Revised 29 March; Accepted 21 April, Available online 15 May 2021 UJPR follows the most transparent and toughest ‘Advanced OPEN peer review’ system. The identity of the authors and, reviewers will be known to each other. This transparent process will help to eradicate any possible malicious/purposeful interference by any person (publishing staff, reviewer, editor, author, etc) during peer review. As a result of this unique system, all reviewers will get their due recognition and respect, once their names are published in the papers. We expect that, by publishing peer review reports with published papers, will be helpful to many authors for drafting their article according to the specifications. Auhors will remove any error of their article and they will improve their article(s) according to the previous reports displayed with published article(s). The main purpose of it is ‘to improve the quality of a candidate manuscript’. Our reviewers check the ‘strength and weakness of a manuscript honestly’. There will increase in the perfection, and transparency.  Received file:                Reviewer's Comments: Average Peer review marks at initial stage: 6.5/10 Average Peer review marks at publication stage: 8.0/10 Reviewer(s) detail: Prof. Dr. Hassan A.H. Al-Shamahy,  Sana'a University, Yemen, [email protected] Dr. Wadhah Hassan Ali Edrees, Hajja University, Yemen, [email protected]   Similar Articles: ANTIDIABETIC AND ANTIHYPERLIPIDEMIC ACTIVITY OF DRACAENA CINNABARI BALF. RESIN ETHANOLIC EXTRACT OF SOQATRA ISLAND IN EXPERIMENTAL ANIMALS ANTIHYPERGLYCEMIC AND ANTI-OXIDANT POTENTIAL OF ETHANOL EXTRACT OF VITEX THYRSIFLORA LEAVES ON DIABETIC RATS


2021 ◽  
Author(s):  
F. Paolo Mancusoa ◽  
Riccardo D’Agostaro ◽  
Marco Milazzo ◽  
Fabio Badalamenti ◽  
Luigi Musco ◽  
...  

Abstract Invasive seaweeds are listed among the most relevant threats to marine ecosystems worldwide. Biodiversity hotspots, such as the Mediterranean Sea, are facing multiple invasions and are expected to be severely affected by the introduction of new non-native seaweeds in the near future. In this study, we evaluated the consequences of the shift from the native Ericaria brachycarpa to the invasive Asparagopsis taxiformis habitat at shallow rocky shores of Favignana Island (Egadi Islands, MPA, Sicily, Italy). We compared algal biomass and species composition and structure of the associated epifaunal assemblages in homogenous and mixed stands of E. brachycarpa and A. taxiformis. Results showed that the biomass of primary producers is reduced by 90% in the A. taxiformis invaded habitat compared to the E. brachycarpa native habitat. The structure of the epifaunal assemblages displayed significant variations among homogenous and mixed stands. The abundance, species richness and Shannon-Wiener diversity index of the epifaunal assemblages decreased by 89%, 78% and 40%, respectively from homogenous stands of the native E. brachycarpa to the invasive A. taxiformis. Seaweed biomass was the structural attribute better explaining the variation of epifaunal abundance, species richness and diversity. Overall, our results suggest that the shift from E. brachycarpa to A. taxiformis habitat would drastically erode the biomass of primary producers and the associated biodiversity. We hypothesize that a complete shift from native to invasive seaweeds can ultimately lead to bottom-up effects in rocky shore habitats, with negative consequences for the ecosystem structure, functioning and the services provided.


Sign in / Sign up

Export Citation Format

Share Document