scholarly journals Chick survival and hunting are important drivers for the dynamics of two Alpine black grouse Lyrurus tetrix populations

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Luca Rotelli ◽  
Radames Bionda ◽  
Niklaus Zbinden ◽  
Michael Schaub
Keyword(s):  
2000 ◽  
Vol 6 (1) ◽  
pp. 233-240 ◽  
Author(s):  
Serguei V. Drovetski ◽  
Sievert Rohwer
Keyword(s):  

Oryx ◽  
2021 ◽  
pp. 1-9
Author(s):  
Johannes H. Fischer ◽  
Heiko U. Wittmer ◽  
Graeme A. Taylor ◽  
Igor Debski ◽  
Doug P. Armstrong

Abstract The population of the recently-described Whenua Hou diving petrel Pelecanoides whenuahouensis comprises c. 200 adults that all breed in a single 0.018 km2 colony in a dune system vulnerable to erosion. The species would therefore benefit from the establishment of a second breeding population through a translocation. However, given the small size of the source population, it is essential that translocations are informed by carefully targeted monitoring data. We therefore modelled nest survival at the remaining population in relation to potential drivers (distance to sea and burrow density of conspecifics and a competitor) across three breeding seasons with varying climatic conditions as a result of the southern oscillation cycle. We also documented breeding phenology and burrow attendance, and measured chicks, to generate growth curves. We estimated egg survival at 0.686, chick survival at 0.890, overall nest survival at 0.612, and found no indication that nest survival was affected by distance to sea or burrow density. Whenua Hou diving petrels laid eggs in mid October, eggs hatched in late November, and chicks fledged in mid January at c. 86% of adult weight. Burrow attendance (i.e. feeds) decreased from 0.94 to 0.65 visits per night as chicks approached fledging. Nest survival and breeding biology were largely consistent among years despite variation in climate. Nest survival estimates will facilitate predictions about future population trends and suitability of prospective translocation sites. Knowledge of breeding phenology will inform the timing of collection of live chicks for translocation, and patterns of burrow attendance combined with growth curves will structure hand-rearing protocols. A tuhinga whakarāpopoto (te reo Māori abstract) can be found in the Supplementary material.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah T. Saalfeld ◽  
Brooke L. Hill ◽  
Christine M. Hunter ◽  
Charles J. Frost ◽  
Richard B. Lanctot

AbstractClimate change in the Arctic is leading to earlier summers, creating a phenological mismatch between the hatching of insectivorous birds and the availability of their invertebrate prey. While phenological mismatch would presumably lower the survival of chicks, climate change is also leading to longer, warmer summers that may increase the annual productivity of birds by allowing adults to lay nests over a longer period of time, replace more nests that fail, and provide physiological relief to chicks (i.e., warmer temperatures that reduce thermoregulatory costs). However, there is little information on how these competing ecological processes will ultimately impact the demography of bird populations. In 2008 and 2009, we investigated the survival of chicks from initial and experimentally-induced replacement nests of arcticola Dunlin (Calidris alpina) breeding near Utqiaġvik, Alaska. We monitored survival of 66 broods from 41 initial and 25 replacement nests. Based on the average hatch date of each group, chick survival (up to age 15 days) from replacement nests (Ŝi = 0.10; 95% CI = 0.02–0.22) was substantially lower than initial nests (Ŝi = 0.67; 95% CI = 0.48–0.81). Daily survival rates were greater for older chicks, chicks from earlier-laid clutches, and during periods of greater invertebrate availability. As temperature was less important to daily survival rates of shorebird chicks than invertebrate availability, our results indicate that any physiological relief experienced by chicks will likely be overshadowed by the need for adequate food. Furthermore, the processes creating a phenological mismatch between hatching of shorebird young and invertebrate emergence ensures that warmer, longer breeding seasons will not translate into abundant food throughout the longer summers. Thus, despite having a greater opportunity to nest later (and potentially replace nests), young from these late-hatching broods will likely not have sufficient food to survive. Collectively, these results indicate that warmer, longer summers in the Arctic are unlikely to increase annual recruitment rates, and thus unable to compensate for low adult survival, which is typically limited by factors away from the Arctic-breeding grounds.


2012 ◽  
Vol 153 (4) ◽  
pp. 999-1009 ◽  
Author(s):  
D. E. Chamberlain ◽  
M. Bocca ◽  
L. Migliore ◽  
E. Caprio ◽  
A. Rolando

1997 ◽  
Vol 28 (2) ◽  
pp. 184 ◽  
Author(s):  
Jacob Hoglund ◽  
Sabine Stohr
Keyword(s):  

Polar Biology ◽  
2021 ◽  
Vol 44 (2) ◽  
pp. 237-257
Author(s):  
Rebecca Shaftel ◽  
Daniel J. Rinella ◽  
Eunbi Kwon ◽  
Stephen C. Brown ◽  
H. River Gates ◽  
...  

AbstractAverage annual temperatures in the Arctic increased by 2–3 °C during the second half of the twentieth century. Because shorebirds initiate northward migration to Arctic nesting sites based on cues at distant wintering grounds, climate-driven changes in the phenology of Arctic invertebrates may lead to a mismatch between the nutritional demands of shorebirds and the invertebrate prey essential for egg formation and subsequent chick survival. To explore the environmental drivers affecting invertebrate availability, we modeled the biomass of invertebrates captured in modified Malaise-pitfall traps over three summers at eight Arctic Shorebird Demographics Network sites as a function of accumulated degree-days and other weather variables. To assess climate-driven changes in invertebrate phenology, we used data from the nearest long-term weather stations to hindcast invertebrate availability over 63 summers, 1950–2012. Our results confirmed the importance of both accumulated and daily temperatures as predictors of invertebrate availability while also showing that wind speed negatively affected invertebrate availability at the majority of sites. Additionally, our results suggest that seasonal prey availability for Arctic shorebirds is occurring earlier and that the potential for trophic mismatch is greatest at the northernmost sites, where hindcast invertebrate phenology advanced by approximately 1–2.5 days per decade. Phenological mismatch could have long-term population-level effects on shorebird species that are unable to adjust their breeding schedules to the increasingly earlier invertebrate phenologies.


Sign in / Sign up

Export Citation Format

Share Document