The effect of soil carbon on symbiotic nitrogen fixation and symbioticRhizobiumpopulations in soil withTrifolium repensas host plant

2011 ◽  
Vol 28 (3) ◽  
pp. 121-127 ◽  
Author(s):  
P A Swanepoel ◽  
P R Botha ◽  
W F Truter ◽  
A KJ Surridge-Talbot
2020 ◽  
Vol 117 (3) ◽  
pp. 1806-1815 ◽  
Author(s):  
Yoshikazu Shimoda ◽  
Yuki Nishigaya ◽  
Hiroko Yamaya-Ito ◽  
Noritoshi Inagaki ◽  
Yosuke Umehara ◽  
...  

Leguminous plants establish endosymbiotic associations with rhizobia and form root nodules in which the rhizobia fix atmospheric nitrogen. The host plant and intracellular rhizobia strictly control this symbiotic nitrogen fixation. We recently reported a Lotus japonicus Fix− mutant, apn1 (aspartic peptidase nodule-induced 1), that impairs symbiotic nitrogen fixation. APN1 encodes a nodule-specific aspartic peptidase involved in the Fix− phenotype in a rhizobial strain-specific manner. This host-strain specificity implies that some molecular interactions between host plant APN1 and rhizobial factors are required, although the biological function of APN1 in nodules and the mechanisms governing the interactions are unknown. To clarify how rhizobial factors are involved in strain-specific nitrogen fixation, we explored transposon mutants of Mesorhizobium loti strain TONO, which normally form Fix− nodules on apn1 roots, and identified TONO mutants that formed Fix+ nodules on apn1. The identified causal gene encodes an autotransporter, part of a protein secretion system of Gram-negative bacteria. Expression of the autotransporter gene in M. loti strain MAFF3030399, which normally forms Fix+ nodules on apn1 roots, resulted in Fix− nodules. The autotransporter of TONO functions to secrete a part of its own protein (a passenger domain) into extracellular spaces, and the recombinant APN1 protein cleaved the passenger protein in vitro. The M. loti autotransporter showed the activity to induce the genes involved in nodule senescence in a dose-dependent manner. Therefore, we conclude that the nodule-specific aspartic peptidase, APN1, suppresses negative effects of the rhizobial autotransporter in order to maintain effective symbiotic nitrogen fixation in root nodules.


Nature ◽  
2009 ◽  
Vol 462 (7272) ◽  
pp. 514-517 ◽  
Author(s):  
Tsuneo Hakoyama ◽  
Kaori Niimi ◽  
Hirokazu Watanabe ◽  
Ryohei Tabata ◽  
Junichi Matsubara ◽  
...  

2015 ◽  
pp. 1-116 ◽  
Author(s):  
Sangam L. Dwivedi ◽  
Kanwar L. Sahrawat ◽  
Hari D. Upadhyaya ◽  
Alessio Mengoni ◽  
Marco Galardini ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 2002-2014
Author(s):  
Ling-Ling Yang ◽  
Zhao Jiang ◽  
Yan Li ◽  
En-Tao Wang ◽  
Xiao-Yang Zhi

Abstract Rhizobia are soil bacteria capable of forming symbiotic nitrogen-fixing nodules associated with leguminous plants. In fast-growing legume-nodulating rhizobia, such as the species in the family Rhizobiaceae, the symbiotic plasmid is the main genetic basis for nitrogen-fixing symbiosis, and is susceptible to horizontal gene transfer. To further understand the symbioses evolution in Rhizobiaceae, we analyzed the pan-genome of this family based on 92 genomes of type/reference strains and reconstructed its phylogeny using a phylogenomics approach. Intriguingly, although the genetic expansion that occurred in chromosomal regions was the main reason for the high proportion of low-frequency flexible gene families in the pan-genome, gene gain events associated with accessory plasmids introduced more genes into the genomes of nitrogen-fixing species. For symbiotic plasmids, although horizontal gene transfer frequently occurred, transfer may be impeded by, such as, the host’s physical isolation and soil conditions, even among phylogenetically close species. During coevolution with leguminous hosts, the plasmid system, including accessory and symbiotic plasmids, may have evolved over a time span, and provided rhizobial species with the ability to adapt to various environmental conditions and helped them achieve nitrogen fixation. These findings provide new insights into the phylogeny of Rhizobiaceae and advance our understanding of the evolution of symbiotic nitrogen fixation.


2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Sanjiao Wang ◽  
Tiantian Lu ◽  
Qiang Xue ◽  
Ke Xu ◽  
Guojun Cheng

2021 ◽  
Vol 144 ◽  
pp. 105576
Author(s):  
Victor Hugo Vidal Ribeiro ◽  
Lucas Gontijo Silva Maia ◽  
Nicholas John Arneson ◽  
Maxwel Coura Oliveira ◽  
Harry Wood Read ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document