scholarly journals An Overview on Deep Learning in Image Super-Resolution for Advanced Machine Vision System

2021 ◽  
Author(s):  
Meet Kumari
Author(s):  
Ahmad Jahanbakhshi ◽  
Yousef Abbaspour-Gilandeh ◽  
Kobra Heidarbeigi ◽  
Mohammad Momeny

Author(s):  
Zhaowei Chen ◽  
Mikey R. Holtz ◽  
Samuel J. Vidourek ◽  
Hossein Alisafaee

Procedia CIRP ◽  
2020 ◽  
Vol 90 ◽  
pp. 611-616
Author(s):  
Hubert Würschinger ◽  
Matthias Mühlbauer ◽  
Michael Winter ◽  
Michael Engelbrecht ◽  
Nico Hanenkamp

Fast track article for IS&T International Symposium on Electronic Imaging 2020: Stereoscopic Displays and Applications proceedings.


Author(s):  
Qiang Yu ◽  
Feiqiang Liu ◽  
Long Xiao ◽  
Zitao Liu ◽  
Xiaomin Yang

Deep-learning (DL)-based methods are of growing importance in the field of single image super-resolution (SISR). The practical application of these DL-based models is a remaining problem due to the requirement of heavy computation and huge storage resources. The powerful feature maps of hidden layers in convolutional neural networks (CNN) help the model learn useful information. However, there exists redundancy among feature maps, which can be further exploited. To address these issues, this paper proposes a lightweight efficient feature generating network (EFGN) for SISR by constructing the efficient feature generating block (EFGB). Specifically, the EFGB can conduct plain operations on the original features to produce more feature maps with parameters slightly increasing. With the help of these extra feature maps, the network can extract more useful information from low resolution (LR) images to reconstruct the desired high resolution (HR) images. Experiments conducted on the benchmark datasets demonstrate that the proposed EFGN can outperform other deep-learning based methods in most cases and possess relatively lower model complexity. Additionally, the running time measurement indicates the feasibility of real-time monitoring.


2005 ◽  
Vol 56 (8-9) ◽  
pp. 831-842 ◽  
Author(s):  
Monica Carfagni ◽  
Rocco Furferi ◽  
Lapo Governi

2012 ◽  
Vol 546-547 ◽  
pp. 1382-1386
Author(s):  
Yin Xia Liu ◽  
Ping Zhou

In order to promote the application and development of machine vision, The paper introduces the components of a machine vision system、common lighting technique and machine vision process. And the key technical problems are also briefly discussed in the application. A reference idea for application program of testing the quality of the machine parts is offered.


Sign in / Sign up

Export Citation Format

Share Document