scholarly journals Network Traffic Prediction Based on Feed-forward Neural Network with PLS Pruning Algorithm

Author(s):  
Zhenxing Li ◽  
Qinghai Meng
Author(s):  
J.P. Kharat

<p>Network traffic as it is VBR in nature exhibits strong correlations which make it suitable for prediction. Real-time forecasting of network traffic load accurately and in a computationally efficient manner is the key element of proactive network management and congestion control. This paper comments on the MPEG-4 video traffic predictions evaluated by different types of neural network architectures and compares the performance of the same in terms of mean square error for the same video frames. For that three types of neural architectures are used namely Feed forward, Cascaded Feed forward and Time Delay Neural Network. The results show that cascade feed forward network produces minimum error as compared to other networks. This paper also compares the results of traditional prediction method of averaging of frames for future frame prediction with neural based methods. The experimental results show that nonlinear prediction based on NNs is better suited for traffic prediction purposes than linear forecasting models.</p>


2021 ◽  
Vol 118 ◽  
pp. 103766
Author(s):  
Ahmed J. Aljaaf ◽  
Thakir M. Mohsin ◽  
Dhiya Al-Jumeily ◽  
Mohamed Alloghani

Author(s):  
Qingtian Zeng ◽  
Qiang Sun ◽  
Geng Chen ◽  
Hua Duan

AbstractWireless cellular traffic prediction is a critical issue for researchers and practitioners in the 5G/B5G field. However, it is very challenging since the wireless cellular traffic usually shows high nonlinearities and complex patterns. Most existing wireless cellular traffic prediction methods lack the abilities of modeling the dynamic spatial–temporal correlations of wireless cellular traffic data, thus cannot yield satisfactory prediction results. In order to improve the accuracy of 5G/B5G cellular network traffic prediction, an attention-based multi-component spatiotemporal cross-domain neural network model (att-MCSTCNet) is proposed, which uses Conv-LSTM or Conv-GRU for neighbor data, daily cycle data, and weekly cycle data modeling, and then assigns different weights to the three kinds of feature data through the attention layer, improves their feature extraction ability, and suppresses the feature information that interferes with the prediction time. Finally, the model is combined with timestamp feature embedding, multiple cross-domain data fusion, and jointly with other models to assist the model in traffic prediction. Experimental results show that compared with the existing models, the prediction performance of the proposed model is better. Among them, the RMSE performance of the att-MCSTCNet (Conv-LSTM) model on Sms, Call, and Internet datasets is improved by 13.70 ~ 54.96%, 10.50 ~ 28.15%, and 35.85 ~ 100.23%, respectively, compared with other existing models. The RMSE performance of the att-MCSTCNet (Conv-GRU) model on Sms, Call, and Internet datasets is about 14.56 ~ 55.82%, 12.24 ~ 29.89%, and 38.79 ~ 103.17% higher than other existing models, respectively.


Sign in / Sign up

Export Citation Format

Share Document