scholarly journals Modeling of the Dynamics of a Carriage Taking into Account the Geometric Nonlinearity of Displacements and Deformation

Author(s):  
A.A. Tarmaev ◽  
G.I. Petrov ◽  
V.N. Filippov
2020 ◽  
Vol 92 (6) ◽  
pp. 3-12
Author(s):  
A.G. KOLESNIKOV ◽  

Geometric nonlinearity shallow shells on a square and rectangular plan with constant and variable thickness are considered. Loss of stability of a structure due to a decrease in the rigidity of one of the support (transition from fixed support to hinged support) is considered. The Bubnov-Galerkin method is used to solve differential equations of shallow geometrically nonlinear shells. The Vlasov's beam functions are used for approximating. The use of dimensionless quantities makes it possible to repeat the calculations and obtain similar dependences. The graphs are given that make it possible to assess the reduction in the critical load in the shell at each stage of reducing the rigidity of the support and to predict the further behavior of the structure. Regularities of changes in internal forces for various types of structure support are shown. Conclusions are made about the necessary design solutions to prevent the progressive collapse of the shell due to a decrease in the rigidity of one of the supports.


2017 ◽  
Vol 116 ◽  
pp. 37-52 ◽  
Author(s):  
Jian Li ◽  
Chang-Yu Zhou ◽  
Le Chang ◽  
Xin-Ting Miao ◽  
Xiao-Hua He

Author(s):  
Koki Yamada ◽  
Yuga Shigeyoshi ◽  
Shuangjing Chen ◽  
Yoshiki Nishi

Abstract Purpose This study elucidated the effect of an inclined spring arrangement on the flow-induced vibration of a circular cylinder to understand if the effect enhances the harnessing of the energy of fluid flows. Method An experiment was conducted on a circulating water channel. A circular cylinder was partially submerged. It was elastically supported by two springs whose longitudinal directions were varied. With the speed of the water flow varied, the vibrations of the circular cylinder were measured. The measured vibrations were interpreted by la linear dynamic model. Results and discussion In a few cases, a jump in response amplitudes from zero to the maximum was observed with the spring inclination at reduced velocities of 6 to 7, whereas gradually increasing response amplitudes were observed in other cases. The inclined spring arrangement achieved greater velocity amplitudes than in cases without spring inclination. A theoretical evaluation of the measured responses indicates that the effect of the inclined springs was caused by geometric nonlinearity; the effect would be more prominent by employing a longer moment lever.


Author(s):  
Ioannis T. Georgiou

In this work, the nonlinear coupled dynamics of a sandwich structure with hexagonal honeycomb core are characterized in terms of Proper Orthogonal Decomposition modes. A high fidelity nonlinear finite element model is derived to describe geometric nonlinearity and displacement and rotation fields that govern the coupled dynamics. Contrary to equivalent continuum models used to predict vibration properties of lattice and sandwich structures, a high fidelity finite element model allows for a quite detailed description of the distributed complicated geometric nonlinearity of the core. It was found that the free dynamics excited by a blast load and the forced dynamics excited by a harmonic force posses POD modes which are localized in space and time. The processing of the simulated dynamics by the Time Discrete Proper Transform forms a means to study the nonlinear coupled dynamics of sandwich structures in the context of nonlinear normal modes of vibration and reduced order models.


2011 ◽  
Vol 117-119 ◽  
pp. 695-698
Author(s):  
Chun Yi Cui ◽  
Zhong Tao Wang ◽  
Jian Huang

For its construction convenience and structure integrity, cofferdams are widely employed in port engineering. Past experience has shown that cofferdam are subjected to damage due to earthquake excitations. Numerical analyses with both response spectrum and step-by-step integration methods are conducted by using Lanczos eigenvalue extraction technique to obtain natural frequencies and modes, and solving dynamic equations with Newmark implicit method to consider geometric nonlinearity. The computational results show that the natural frequency of cofferdam system is low and the horizontal translation stiffness of cofferdam in positive direction is higher than that in negative direction. Under seismic excitation, the displacement response of inner steel sheet is much more obvious than that of outer one. And the distribution of horizontal displacements in steel sheets presents the characteristics that the corresponding values increase with their heights in the cofferdam system. On the contrary, the deviatonic stresses of cofferdam decrease with the augments of height.


Sign in / Sign up

Export Citation Format

Share Document