Limit loads for un-cracked and circumferential through-wall cracked pipe bends under torsion moment considering geometric nonlinearity

2017 ◽  
Vol 116 ◽  
pp. 37-52 ◽  
Author(s):  
Jian Li ◽  
Chang-Yu Zhou ◽  
Le Chang ◽  
Xin-Ting Miao ◽  
Xiao-Hua He
2015 ◽  
Vol 100 ◽  
pp. 283-297 ◽  
Author(s):  
Jian Li ◽  
Chang-Yu Zhou ◽  
Xin-Ting Miao ◽  
Le Chang ◽  
Xiao-Hua He

2015 ◽  
Vol 92 ◽  
pp. 133-145 ◽  
Author(s):  
Jian Li ◽  
Chang-Yu Zhou ◽  
Peng Cui ◽  
Xiao-Hua He

2020 ◽  
Vol 92 (6) ◽  
pp. 3-12
Author(s):  
A.G. KOLESNIKOV ◽  

Geometric nonlinearity shallow shells on a square and rectangular plan with constant and variable thickness are considered. Loss of stability of a structure due to a decrease in the rigidity of one of the support (transition from fixed support to hinged support) is considered. The Bubnov-Galerkin method is used to solve differential equations of shallow geometrically nonlinear shells. The Vlasov's beam functions are used for approximating. The use of dimensionless quantities makes it possible to repeat the calculations and obtain similar dependences. The graphs are given that make it possible to assess the reduction in the critical load in the shell at each stage of reducing the rigidity of the support and to predict the further behavior of the structure. Regularities of changes in internal forces for various types of structure support are shown. Conclusions are made about the necessary design solutions to prevent the progressive collapse of the shell due to a decrease in the rigidity of one of the supports.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 567
Author(s):  
Łukasz Żmuda-Trzebiatowski ◽  
Piotr Iwicki

The paper examines effectiveness of the vibration correlation technique which allows determining the buckling or limit loads by means of measured natural frequencies of structures. A steel silo segment with a corrugated wall, stiffened with cold-formed channel section columns was analysed. The investigations included numerical analyses of: linear buckling, dynamic eigenvalue and geometrically static non-linear problems. Both perfect and imperfect geometries were considered. Initial geometrical imperfections included first and second buckling and vibration mode shapes with three amplitudes. The vibration correlation technique proved to be useful in estimating limit or buckling loads. It was very efficient in the case of small and medium imperfection magnitudes. The significant deviations between the predicted and calculated buckling and limit loads occurred when large imperfections were considered.


2006 ◽  
Vol 129 (3) ◽  
pp. 391-399 ◽  
Author(s):  
R. Adibi-Asl ◽  
R. Seshadri

Cracks and flaws occur in mechanical components and structures, and can lead to catastrophic failures. Therefore, integrity assessment of components with defects is carried out. This paper describes the Elastic Modulus Adjustment Procedures (EMAP) employed herein to determine the limit load of components with cracks or crack-like flaw. On the basis of linear elastic Finite Element Analysis (FEA), by specifying spatial variations in the elastic modulus, numerous sets of statically admissible and kinematically admissible distributions can be generated, to obtain lower and upper bounds limit loads. Due to the expected local plastic collapse, the reference volume concept is applied to identify the kinematically active and dead zones in the component. The Reference Volume Method is shown to yield a more accurate prediction of local limit loads. The limit load values are then compared with results obtained from inelastic FEA. The procedures are applied to a practical component with crack in order to verify their effectiveness in analyzing crack geometries. The analysis is then directed to geometries containing multiple cracks and three-dimensional defect in pressurized components.


Sign in / Sign up

Export Citation Format

Share Document