scholarly journals Study On Application Of Monitoring The Melt Flow Balance Of Injection Molding Process By Using Cavity Pressure Monitoring Technology

Author(s):  
Jinwei Chen ◽  
Ling Yang
2013 ◽  
Vol 756-759 ◽  
pp. 528-532
Author(s):  
Jin Wei Chen ◽  
Ling Yang

At first this paper described the cavity pressure monitoring technology definition and work principle. Then showed that made use of monitoring the cavity pressure curve and study melt flow balance by specific example. The use of cavity pressure curve could be quickly and accurately get the best process parameters, so change the way of obtaining process parameters optimization from the "experience" basis to "scientific" basis. The article concluded it could understand deeply and grasp the relationship among the three proposals of the cavity pressure curve, process parameters and product quality.


2013 ◽  
Vol 694-697 ◽  
pp. 1105-1109
Author(s):  
Jin Wei Chen ◽  
Xiang Fang Peng

At first this paper described the cavity pressure monitoring technology definition and work principle. Then showed that made use of monitoring the cavity pressure curve and study melt flow balance by specific example. The use of cavity pressure curve could be quickly and accurately get the best process parameters, so change the way of obtaining process parameters optimization from the "experience" basis to "scientific" basis. The article concluded it could understand deeply and grasp the relationship among the three proposals of the cavity pressure curve, process parameters and product quality.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 965 ◽  
Author(s):  
Nguyen Truong Giang ◽  
Pham Son Minh ◽  
Tran Anh Son ◽  
Tran Minh The Uyen ◽  
Thanh-Hai Nguyen ◽  
...  

In the injection molding field, the flow of plastic material is one of the most important issues, especially regarding the ability of melted plastic to fill the thin walls of products. To improve the melt flow length, a high mold temperature was applied with pre-heating of the cavity surface. In this paper, we present our research on the injection molding process with pre-heating by external gas-assisted mold temperature control. After this, we observed an improvement in the melt flow length into thin-walled products due to the high mold temperature during the filling step. In addition, to develop the heating efficiency, a flow focusing device (FFD) was applied and verified. The simulations and experiments were carried out within an air temperature of 400 °C and heating time of 20 s to investigate a flow focusing device to assist with external gas-assisted mold temperature control (Ex-GMTC), with the application of various FFD types for the temperature distribution of the insert plate. The heating process was applied for a simple insert model with dimensions of 50 mm × 50 mm × 2 mm, in order to verify the influence of the FFD geometry on the heating result. After that, Ex-GMTC with the assistance of FFD was carried out for a mold-reading process, and the FFD influence was estimated by the mold heating result and the improvement of the melt flow length using acrylonitrile butadiene styrene (ABS). The results show that the air sprue gap (h) significantly affects the temperature of the insert and an air sprue gap of 3 mm gives the best heating rate, with the highest temperature being 321.2 °C. Likewise, the actual results show that the height of the flow focusing device (V) also influences the temperature of the insert plate and that a 5 mm high FFD gives the best results with a maximum temperature of 332.3 °C. Moreover, the heating efficiency when using FFD is always higher than without FFD. After examining the effect of FFD, its application was considered, in order to improve the melt flow length in injection molding, which increased from 38.6 to 170 mm, while the balance of the melt filling was also clearly improved.


2014 ◽  
Author(s):  
Catalin Fetecau ◽  
Felicia Stan ◽  
Laurentiu I. Sandu

This paper focuses on the in-mold monitoring of temperature and cavity pressure. The melt contact temperature and the cavity pressure along the flow path were directly measured using two pressure sensors and two temperature sensors fitted into the cavity of a spiral mold. Three melt temperatures and dies of different heights (1.0, 1.5 and 2 mm) were used to achieve a wide range of practically relevant shear rates. In order to analyze the extent to which the numerical simulation can predict the behavior of the molten polymer during the injection molding process, molding experiments were simulated using the Moldflow software and the simulation results were compared with the experimental data under the same injection molding conditions.


2019 ◽  
Vol 971 ◽  
pp. 15-20
Author(s):  
The Nhan Phan ◽  
Trung Do Thanh ◽  
Son Minh Pham

Improving the melt flow length by increasing the mold temperature has been an issue encountered in the injection molding processes for composite products. In this study, an injection molding process was applied to a melt flow length model having a part thickness of 1.0 mm. The mold temperature varied from 30 °C to 110 °C. Six types of composite materials of polycaprolactam 6 (PA6) and glass fiber (GF) were selected to study the influence of mold temperature on the material filling in the injection molding process. The simulation results denoted that the mold temperature considerably influenced the flowability during the injection molding process, especially using 30% GF; further, the melt flow length was increased by 25.5% when the mold temperature was increased from 30 °C to 110 °C. In accordance with the simulation, our experiments demonstrated that we could achieve a mold temperature of 110 °C using all types of composite materials. Therefore, in this study, we denoted that both the simulation and experimental results of the melt flow length were comparable, thereby indicating a good agreement.


2009 ◽  
Vol 83-86 ◽  
pp. 367-374 ◽  
Author(s):  
Wan Aizan Wan Abd. Rahman ◽  
N.M. Isa ◽  
A.R. Rahmat ◽  
N. Adenan ◽  
R.R. Ali

The compounding of rice husk and high density polyethylene (HDPE) was undertaken on a Sino PSM 30 co-rotating twin screw extruder. Four sizes of rice husk were studied at various compositions. The size ranged from 500 μm and below (coded A, B, C and D) while the content of rice husk in the composite varies from 30, 40 and 50 percent of weight. A fixed amount of Ultra-Plast TP10 as a compatibilizer and Ultra-Plast TP 01 as lubricant, were added into the bio-composite compound. The injection molding process ability of the bio-composite was studied through flow behavior on melt flow indexer and analyzed on JSW N100 B11 Injection Molding. Size A which has the largest particle is the most appropriate size as the bio-composite filler based on thermal stability test. The melt flow rate of rice husk/HDPE (RHPE) decreases with the increased in rice husk compositions and apparent viscosity also increases with composition for all filler size. Melt flow rate above 4g/10 min was found to be the lower limit for injection molding process. The smaller the filler size, the lower is the impact strength and the increased in the filler composition lowers the impact strength. A bio-composite at 30 weight percent rice husk size A (RH30PEA) was found to have optimum rheological properties with respect to impact strength.


2018 ◽  
Vol 145 ◽  
pp. 02006
Author(s):  
Margarita Natova ◽  
Ivan Ivanov ◽  
Sabina Cherneva ◽  
Maria Datcheva ◽  
Roumen Iankov

During conventional polymer injection molding, flow- and weld lines can arise at the molded parts caused by disturbed polymer melt flow when it crosses different parts of the equipment. Such processed plastic goods have discrete zones of inhomogeneities of very small dimensions. In order to stabilize the melt flow and to equalize dimensions of such defective products, an approach for pulse injection molding is applied during production of polymer packagings. Testing methods used for evaluation of macromechanical performance of processed polymer products are not readily applicable to estimate the changes in visual surface obtained during pulse injecting. To overcome this testing inconvenience the performance of processed packagings is evaluated by nanoindentation. Using this method, a quantitative assessment of the polymer properties is obtained from different parts of technological products.


Sign in / Sign up

Export Citation Format

Share Document