Rice Husk/High Density Polyethylene Bio-Composite: Effect of Rice Husk Filler Size and Composition on Injection Molding Processability with Respect to Impact Property

2009 ◽  
Vol 83-86 ◽  
pp. 367-374 ◽  
Author(s):  
Wan Aizan Wan Abd. Rahman ◽  
N.M. Isa ◽  
A.R. Rahmat ◽  
N. Adenan ◽  
R.R. Ali

The compounding of rice husk and high density polyethylene (HDPE) was undertaken on a Sino PSM 30 co-rotating twin screw extruder. Four sizes of rice husk were studied at various compositions. The size ranged from 500 μm and below (coded A, B, C and D) while the content of rice husk in the composite varies from 30, 40 and 50 percent of weight. A fixed amount of Ultra-Plast TP10 as a compatibilizer and Ultra-Plast TP 01 as lubricant, were added into the bio-composite compound. The injection molding process ability of the bio-composite was studied through flow behavior on melt flow indexer and analyzed on JSW N100 B11 Injection Molding. Size A which has the largest particle is the most appropriate size as the bio-composite filler based on thermal stability test. The melt flow rate of rice husk/HDPE (RHPE) decreases with the increased in rice husk compositions and apparent viscosity also increases with composition for all filler size. Melt flow rate above 4g/10 min was found to be the lower limit for injection molding process. The smaller the filler size, the lower is the impact strength and the increased in the filler composition lowers the impact strength. A bio-composite at 30 weight percent rice husk size A (RH30PEA) was found to have optimum rheological properties with respect to impact strength.

Author(s):  
Jibin Li ◽  
Keke Xu ◽  
Haixiong Wang ◽  
Haijun Liu

This paper rebuilt a set of melt flow rate instrument which is loaded a power adjustable ultrasonic device. The melt flow rate (viscosity curve) is studied on three kinds of plastic materials, PC, ABS, and PMMA, at different temperatures. The variation of melt flow rate is analyzed under the ultrasonic field. In addition, the practicability of ultrasonic-assisted high light seamless injection molding process and technology is tested and discussed.


2021 ◽  
pp. 009524432110153
Author(s):  
Carlos Bruno Barreto Luna ◽  
Danilo Diniz Siqueira ◽  
Eduardo da Silva Barbosa Ferreira ◽  
Edcleide Maria Araújo ◽  
Renate Maria Ramos Wellen

In this work, an experimental design was applied in the injection molding process of polycaprolactone (PCL), aiming to evaluate the mechanical properties (impact strength, tensile strength and Shore D Hardness), thermal (differential scanning calorimetry (DSC)) and thermomechanical (heat deflection temperature (HDT)), in PCL injected specimens. A type 2n planning was applied, with n = 3 and central point, having the input factors: processing temperature profile, mold temperature and injection flow. The results showed that the DSC curves presented a complex mechanism during crystallization, suggesting that depending on the processing conditions a high degree of crystallinity can be obtained. When using a higher processing temperature and a higher injection flow, there is an increase in the mass of the PCL parts. The impact strength is more expressive when a higher injection flow and a lower processing temperature are applied, reaching values around 260 J/m. The mold temperature impairs the elongation at the break of the PCL, while the elastic modulus was governed by the degree of crystallinity. A deleterious effect on HDT was observed with increased injection flow, suggesting that this parameter negatively affects thermomechanical resistance. The use of experimental design in the processing of PCL is important, since it is possible to optimize properties with the ideal conditions of injection molding.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 965 ◽  
Author(s):  
Nguyen Truong Giang ◽  
Pham Son Minh ◽  
Tran Anh Son ◽  
Tran Minh The Uyen ◽  
Thanh-Hai Nguyen ◽  
...  

In the injection molding field, the flow of plastic material is one of the most important issues, especially regarding the ability of melted plastic to fill the thin walls of products. To improve the melt flow length, a high mold temperature was applied with pre-heating of the cavity surface. In this paper, we present our research on the injection molding process with pre-heating by external gas-assisted mold temperature control. After this, we observed an improvement in the melt flow length into thin-walled products due to the high mold temperature during the filling step. In addition, to develop the heating efficiency, a flow focusing device (FFD) was applied and verified. The simulations and experiments were carried out within an air temperature of 400 °C and heating time of 20 s to investigate a flow focusing device to assist with external gas-assisted mold temperature control (Ex-GMTC), with the application of various FFD types for the temperature distribution of the insert plate. The heating process was applied for a simple insert model with dimensions of 50 mm × 50 mm × 2 mm, in order to verify the influence of the FFD geometry on the heating result. After that, Ex-GMTC with the assistance of FFD was carried out for a mold-reading process, and the FFD influence was estimated by the mold heating result and the improvement of the melt flow length using acrylonitrile butadiene styrene (ABS). The results show that the air sprue gap (h) significantly affects the temperature of the insert and an air sprue gap of 3 mm gives the best heating rate, with the highest temperature being 321.2 °C. Likewise, the actual results show that the height of the flow focusing device (V) also influences the temperature of the insert plate and that a 5 mm high FFD gives the best results with a maximum temperature of 332.3 °C. Moreover, the heating efficiency when using FFD is always higher than without FFD. After examining the effect of FFD, its application was considered, in order to improve the melt flow length in injection molding, which increased from 38.6 to 170 mm, while the balance of the melt filling was also clearly improved.


Author(s):  
С. В. Пристинський ◽  
Ю. О. Будаш ◽  
В. І. Ступа ◽  
І. О. Пустовойт

Comparative analysis the main parameters of injection molding and the physic-mechanicals properties of polymer compositions based on polyamide 6.6. Samples we had obtained by injection molding method at injection molding machine ENGEL E-MAC 170/75. The process parameters had determined empirically to achieve certain quality criteria. Physics and mechanicals properties had evaluated by Sharpy impact strength. Statistical data processing, construction of graphs and diagrams had done in MS Excel. During the researching, had done a comparative analysis of the main parameters of the injection molding process, physical and mechanical properties, such as impact strength of the samples obtained from the glass-filled polymer composition based on polyamide PA6.6-GFGB30 and the material without glass filler PA6.6. During the experiment and data, analysis had revealed an increase in the impact strength of samples by 43%, cast from polymeric composition material PA6.6-GFGB30 in comparison with PA6.6. At the same time the process parameters such as the temperature, which directly affects the energy resources consumption, did not receive statistically significant changes. Among the features of changes in process parameters, we can note an increase in switching pressure, a decrease in the dosing time, and others. In addition, the speed and linear values of the process have changed. For the first time had performed a detailed comparative analysis the main processing parameters by injection molding and the physic-mechanicals properties of polymer compositions based on polyamide 6.6. The results will allow a professional approach to the selection of polymer compositions and technological parameters the process of their processing by injection molding.


2019 ◽  
Vol 971 ◽  
pp. 15-20
Author(s):  
The Nhan Phan ◽  
Trung Do Thanh ◽  
Son Minh Pham

Improving the melt flow length by increasing the mold temperature has been an issue encountered in the injection molding processes for composite products. In this study, an injection molding process was applied to a melt flow length model having a part thickness of 1.0 mm. The mold temperature varied from 30 °C to 110 °C. Six types of composite materials of polycaprolactam 6 (PA6) and glass fiber (GF) were selected to study the influence of mold temperature on the material filling in the injection molding process. The simulation results denoted that the mold temperature considerably influenced the flowability during the injection molding process, especially using 30% GF; further, the melt flow length was increased by 25.5% when the mold temperature was increased from 30 °C to 110 °C. In accordance with the simulation, our experiments demonstrated that we could achieve a mold temperature of 110 °C using all types of composite materials. Therefore, in this study, we denoted that both the simulation and experimental results of the melt flow length were comparable, thereby indicating a good agreement.


2018 ◽  
Vol 145 ◽  
pp. 02006
Author(s):  
Margarita Natova ◽  
Ivan Ivanov ◽  
Sabina Cherneva ◽  
Maria Datcheva ◽  
Roumen Iankov

During conventional polymer injection molding, flow- and weld lines can arise at the molded parts caused by disturbed polymer melt flow when it crosses different parts of the equipment. Such processed plastic goods have discrete zones of inhomogeneities of very small dimensions. In order to stabilize the melt flow and to equalize dimensions of such defective products, an approach for pulse injection molding is applied during production of polymer packagings. Testing methods used for evaluation of macromechanical performance of processed polymer products are not readily applicable to estimate the changes in visual surface obtained during pulse injecting. To overcome this testing inconvenience the performance of processed packagings is evaluated by nanoindentation. Using this method, a quantitative assessment of the polymer properties is obtained from different parts of technological products.


2012 ◽  
Vol 32 (6-7) ◽  
pp. 355-363 ◽  
Author(s):  
Shuang-quan Deng ◽  
Bin Yang ◽  
Ji-bin Miao ◽  
Ru Xia ◽  
Jia-sheng Qian ◽  
...  

Abstract In this work, the effect of the initial and secondary temperature differences on the solidification behaviors of high-density polyethylene (HDPE) during the thin-walled injection molding (TWIM) was intensively investigated. Simulated temperature profiles using the enthalpy transformation methodology were compared with an in situ temperature measurement, and reasonable agreement was achieved between calculations and measurements. Two-dimensional wide-angle X-ray diffraction characterization shows that the formation of oriented crystal structures was considerably affected by the thermal gradient within the injection-molded article. The present study can be practically significant to the optimization of the cooling parameters during the TWIM of crystalline polymers as well as to the further study on the relationship among “processing-structure-property” of polymeric materials.


2011 ◽  
Vol 239-242 ◽  
pp. 1137-1140
Author(s):  
Jia Min Zhang ◽  
Ming Yi Zhu ◽  
Zhao Xun Lian

Combining the characteristics of silver inserts, it was tested that its molding process and impact strength from the PA1010 injection molding product's craft. A kind of effective method was found that make sure silver embedded parts not occur surface color as injection heat and determined the reasonable injection molding craft. Meanwhile measuring impact strength of the nylon 1010 injection molding products through the impact test, It was discovered that injection products could well meet the assembly convenient, reliable and the electric conduction needs after inserting the embedded parts in the PA1010 injection molding products. Against molding defects of PA1010 injection molding products and influencing factors of the impact strength, the corresponding analysis was made.


2013 ◽  
Vol 562-565 ◽  
pp. 1380-1386
Author(s):  
Jian Zhuang ◽  
Da Ming Wu ◽  
Ya Jun Zhang ◽  
Lin Wang ◽  
Xiong Wei Wang ◽  
...  

The flow behaviors for polymer melt at the filling stage in micro injection molding are different from those in conventional injection molding due to the miniaturization of plastic parts. This paper focuses on the study of the effects of three main influencing factors, including the microscale viscosity and wall slip, on melt filling flow in microscale neglected those in conventional injection molding process. The theoretical models and the interrelation of these factors in microscale channels were constructed by means of the model correction method. Then, the micro melt flow behaviors were investigated with comparisons of the available experimental data. The results indicate that the dimensions affect the shear rates and viscous dissipation, which in turn affects the apparent viscosity. Finally, the conclusion is that the melt flow behaviors in microchannels are different from those in macrochannels owing to these significant influencing factors.


Sign in / Sign up

Export Citation Format

Share Document