Determination of the spectral characteristics of the rough water surface on digital photographs from unmanned aerial vehicles

2018 ◽  
Vol 62 (6) ◽  
pp. 703-711
Author(s):  
Malinnikov V.A. ◽  
◽  
Uchaev D.V. ◽  
Uchaev Dm.V. ◽  
Silevich A.S. ◽  
...  
2016 ◽  
Author(s):  
Tomasz Niedzielski ◽  
Matylda Witek ◽  
Waldemar Spallek

Abstract. We elaborated a new method for observing water surface areas and river stages using unmanned aerial vehicles (UAVs). It is based on processing multitemporal m orthophotomaps produced from the UAV-taken visual-light photographs of n sites of the river, acquired with a sufficient overlap in each part. Water surface areas are calculated in the first place, and subsequently expressed as fractions of total areas of water-covered terrain at a given site of the river recorded on m dates. The logarithms of the fractions are later calculated, producing m samples of size n. In order to detect statistically significant increments of water surface areas between two orthophotomaps we apply the asymptotic and bootstrapped versions of the Student's t-test, preceded by other tests that aim to check model assumptions. The procedure is applied to five orthophotomaps covering nine sites of the Ścinawka river (SW Poland). The data have been acquired during the experimental campaign, at which flight settings were kept unchanged over nearly 3 years (2012–2014). We have found that it is possible to detect transitions between water surface areas produced by all characteristic water levels (low, mean, intermediate and high stages). In addition, we infer that the identified transitions hold for characteristic river stages as well. In the experiment we detected all increments of water level: (1) from low stages to: mean, intermediate and high stages; (2) from mean stages to: intermediate and high stages; (3) from intermediate stages to high stages. Potential applications of the elaborated method include verification of hydrodynamic models and the associated predictions of high flows using on-demand UAV flights performed in near real-time as well as monitoring water levels of rivers in ungauged basins.


Author(s):  
Tomasz Podciborski ◽  
Jacek Kil

Growing social demand for access to spatial information spurs the rapid development of measurement methods and systems for registering the results of spatial evaluations and analyses (Kwietniewski 2008). Any assessment of spatial development is carried out on the basis of information obtained from specific sources (Kowalczyk 2007). The main objective of this study was to propose a method for assessing the extent of damage caused by natural disasters to croplands and woodlands with the use of unmanned aerial vehicles (drones). The main aim was achieved through detailed goals, including determination of the causes of natural disasters, description of the field inspection procedure and development of loss assessment principles. The proposed method was verified in selected research sites, and the resulting damage report detailing cropland losses is presented in the study.


Author(s):  
Evgeny P. Krupochkin ◽  
◽  
Sergei I. Sukhanov ◽  
Dmitry A. Vorobyov ◽  
◽  
...  

The article describes a methodology for determining the boundaries of archaeological sites using GPS survey and unmanned aerial vehicles (UAVs) with subsequent registration in the cadastral record. The method of georeferencing and photogrammetric processing of orthophotomaps using a system of control points has been tested. The digital photogrammetric program Agisoft Metashape (company Agisoft LLC, St. Petersburg) was chosen for the research. By means the program an orthomosaic was obtained with georeferencing with the Local Coordinate System (LCS-04). The result of the work was the construction of topographic plans and the determination of the boundaries of archaeological sites in accordance with the "Methodology for determining the boundaries of the territories of archaeologi-cal heritage sites, recommended for use by the letter of the Ministry of Culture of the Russian Federa-tion No. 12-01- 39/05-AB dated 27.01.2012".


Sign in / Sign up

Export Citation Format

Share Document