A Fuzzy Neural Control System

Author(s):  
Aaron Don M. Africa ◽  
Author(s):  
Haiyan wang ◽  
◽  
Bai Yu ◽  

2004 ◽  
Vol 471-472 ◽  
pp. 557-562
Author(s):  
Chen Long ◽  
Hao Bin Jiang ◽  
M.C. Yang

A semi-active vehicle suspension model is built, and semi-active suspension control system based on T-S fuzzy neural control strategy is designed. Then, the stability of the control system is analyzed and the condition of stability of the system is deduced. Simulations and experiments are carried out and their results accord with each other, which shows that the controller is stable, valid and has strong robust performance.


2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


2011 ◽  
Vol 110-116 ◽  
pp. 4076-4084
Author(s):  
Hai Cun Du

In this paper, we determine the fuzzy control strategy of inverter air conditioner, the fuzzy control model structure, the neural network and fuzzy control technology, structural design of the fuzzy neural network controller as well as the neural network predictor FNNC NNP. Simulation results show that the fuzzy neural network controller can control the accuracy greatly improved the compressor, and the control system has strong adaptability to achieve a truly intelligent; model of the controller design and implementation of technology are mainly from the practical point of view, which is practical and feasible.


2020 ◽  
Vol 26 (21-22) ◽  
pp. 2037-2049
Author(s):  
Xiao Yan ◽  
Zhao-Dong Xu ◽  
Qing-Xuan Shi

Asymmetric structures experience torsional effects when subjected to seismic excitation. The resulting rotation will further aggravate the damage of the structure. A mathematical model is developed to study the translation and rotation response of the structure during seismic excitation. The motion equations of the structures which cover the translation and rotation are obtained by the theoretical derivations and calculations. Through the simulated computation, the translation and rotation response of the structure with the uncontrolled system, the tuned mass damper control system, and active tuned mass damper control system using linear quadratic regulator algorithm are compared to verify the effectiveness of the proposed active control system. In addition, the linear quadratic regulator and fuzzy neural network algorithm are used to the active tuned mass damper control system as a contrast group to study the response of the structure with different active control method. It can be concluded that the structure response has a significant reduction by using active tuned mass damper control system. Furthermore, it can be also found that fuzzy neural network algorithm can replace the linear quadratic regulator algorithm in an active control system. Because fuzzy neural network algorithm can control the process on an uncertain mathematical model, it has more potential in practical applications than the linear quadratic regulator control method.


Sign in / Sign up

Export Citation Format

Share Document