scholarly journals Usage of multi-objective genetic and multi-objective differential evolution algorithms on energy and spectral efficiencies in massive MIMO systems

2020 ◽  
Vol 5 (1) ◽  
pp. 018-024
Author(s):  
Burak Kürşat Gül ◽  
Necmi Taşpınar

There is a significant increase in the use of wireless communication and it is expected that this increase will continue progressively. In the near future, cellular network technologies are expected to be capable of increasing the area throughput hundreds of times in order to cope with the increase in data traffic. Increasing spectral efficiency (SE) with massive multi-input multi-output (Massive MIMO) systems is one of the main methods used to meet these expectations. SE means the amount of information transmitted successfully with each complex sample. Increasing the transmission power and the number of active antennas while increasing the SE increases the amount of energy consumed to very high levels. The fact that high energy consumption is harmful to the environment and costly makes it important to increase energy efficiency (EE). Various studies are carried out with the aim of bringing optimum levels of the SE and EE parameters which has trade-off between each other. Multi-objective intelligent optimization techniques are applied on the trade-off for detecting optimum SE-EE values. In this paper, multi-objective genetic algorithm (MOGA) and multi-objective differential evolution algorithm (MODEA) are used to obtain optimum values of certain factors (amount of transmit power, number of active antennas and number of user equipments). At the last stage, the calculations made for all values of the mentioned factors and the optimization results (performed in a relatively short time compared to these calculations) are shown on the same graph.

2021 ◽  
Vol 18 (2) ◽  
pp. 69
Author(s):  
María Guadalupe Martínez Peñaloza ◽  
Efrén Mezura Montes ◽  
Alicia Morales Reyes ◽  
Hernán E. Aguirre

Author(s):  
Xiaopei Zhu ◽  
Li Yan ◽  
Boyang Qu ◽  
Pengwei Wen ◽  
Zhao Li

Aims: This paper proposes a differential evolution algorithm to solve the multi-objective sparse reconstruction problem (DEMOSR). Background: The traditional method is to introduce the regularization coefficient and solve this problem through a regularization framework. But in fact, the sparse reconstruction problem can be regarded as a multi-objective optimization problem about sparsity and measurement error (two contradictory objectives). Objective: A differential evolution algorithm to solve multi-objective sparse reconstruction problem (DEMOSR) in sparse signal reconstruction and the practical application. Methods: First of all, new individuals are generated through tournament selection mechanism and differential evolution. Secondly, the iterative half thresholding algorithm is used for local search to increase the sparsity of the solution. To increase the diversity of solutions, a polynomial mutation strategy is introduced. Results: In sparse signal reconstruction, the performance of DEMOSR is better than MOEA/D-ihalf and StEMO. In addition, it can verify the effectiveness of DEMOSR in practical applications for sparse reconstruction of magnetic resonance images. Conclusions: According to the experimental results of DEMOSR in sparse signal reconstruction and the practical application of reconstructing magnetic resonance images, it can be proved that DEMOSR is effective in sparse signal and image reconstruction.


Sign in / Sign up

Export Citation Format

Share Document