THE SEDIMENTOLOGICAL MODEL NEW ELEMENTS OF ACHIMOVSKY THICKNESS CLINOFORM SECTION LOCATED IN THE NORTH OF THE WESTERN SIBERIA BY THE 3D SEISMIC SURVEY DATA

Author(s):  
V.N. Borodkin ◽  
◽  
A.R. Kurchikov ◽  
O.A. Smirnov ◽  
A.V. Lukashov ◽  
...  
2021 ◽  
Vol 44 (1) ◽  
pp. 30-38
Author(s):  
R. S. Urenko ◽  
A. G. Vakhromeev

The fields of Eastern Siberia belong to the one of the main centers of hydrocarbon production in the eastern part of Russia. The main part of hydrocarbon reserves is located in the area within the Nepa-Botuoba anteclise, where the Lower Cambrian deposits are major production objects. The main purpose of this research is to provide a detailed study of the inner space and features of organogenic structures of the Cambrian period, as well as to determine the procedures for detecting reef structures by seismic research methods. Statistical processing of the available factual material on reservoir properties has shown a very uneven distribution of cavernosity (porosity). It is found that pores were formed as a result of leaching of shaped formations in loose packing locations of epigenetic dolomite grains, along the cementing substance in the intergranular spaces, along cracks and stylolite seams. To identify organogenic structures in the Osinsky horizon of the Nepa-Botuoba anteclise on the basis of seismic studies some additional methodologies have been selected. Identification of single reef structures in the Osinsky horizon of the Lower Cambrian based on the analysis of seismic amplitudes was carried out by means of a 2D and 3D seismic survey. According to the data of seismic studies, the Nepa-Botuoba anteclise features the development zones of both linear and single carbonate structures. It is also revealed that there is an increase in effective thicknesses in wells located in the annular anomaly. Summing up the results and analyzing the compared materials, it can be concluded that the main identification method of ring zones in wells is the method of longitudinal wave slowness measurement. A comprehensive analysis of 2D and 3D seismic survey data by the common depth point method as well as by a number of other methods using a specific algorithm allowed us to identify individual formations of organogenic (riphogenic) structures in the carbonate section of the north-eastern part of the Nepa-Botuoba anteclise.


2006 ◽  
Vol 46 (1) ◽  
pp. 101 ◽  
Author(s):  
K.J. Bennett ◽  
M.R. Bussell

The newly acquired 3,590 km2 Demeter 3D high resolution seismic survey covers most of the North West Shelf Venture (NWSV) area; a prolific hydrocarbon province with ultimate recoverable reserves of greater than 30 Tcf gas and 1.5 billion bbls of oil and natural gas liquids. The exploration and development of this area has evolved in parallel with the advent of new technologies, maturing into the present phase of revitalised development and exploration based on the Demeter 3D.The NWSV is entering a period of growing gas market demand and infrastructure expansion, combined with a more diverse and mature supply portfolio of offshore fields. A sequence of satellite fields will require optimised development over the next 5–10 years, with a large number of wells to be drilled.The NWSV area is acknowledged to be a complex seismic environment that, until recently, was imaged by a patchwork of eight vintage (1981–98) 3D seismic surveys, each acquired with different parameters. With most of the clearly defined structural highs drilled, exploration success in recent years has been modest. This is due primarily to severe seismic multiple contamination masking the more subtle and deeper exploration prospects. The poor quality and low resolution of vintage seismic data has also impeded reservoir characterisation and sub-surface modelling. These sub-surface uncertainties, together with the large planned expenditure associated with forthcoming development, justified the need for the Demeter leading edge 3D seismic acquisition and processing techniques to underpin field development planning and reserves evaluations.The objective of the Demeter 3D survey was to re-image the NWSV area with a single acquisition and processing sequence to reduce multiple contamination and improve imaging of intra-reservoir architecture. Single source (133 nominal fold), shallow solid streamer acquisition combined with five stages of demultiple and detailed velocity analysis are considered key components of Demeter.The final Demeter volumes were delivered early 2005 and already some benefits of the higher resolution data have been realised, exemplified in the following:Successful drilling of development wells on the Wanaea, Lambert and Hermes oil fields and identification of further opportunities on Wanaea-Cossack and Lambert- Hermes;Dramatic improvements in seismic data quality observed at the giant Perseus gas field helping define seven development well locations;Considerably improved definition of fluvial channel architecture in the south of the Goodwyn gas field allowing for improved well placement and understanding of reservoir distribution;Identification of new exploration prospects and reevaluation of the existing prospect portfolio. Although the Demeter data set has given significant bandwidth needed for this revitalised phase of exploration and development, there remain areas that still suffer from poor seismic imaging, providing challenges for the future application of new technologies.


Author(s):  
D. Hollis ◽  
C. Cox ◽  
R. Clayton ◽  
F. Lin ◽  
D. Li ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
pp. 8-14
Author(s):  
Vladimir N. Borodkin ◽  
Oleg A. Smirnov

The article presents a brief overview of the views on the stratification of the section of the neocomian deposits. As a basis for geological modeling, instead of formation units, seismic facies complexes were taken, including reservoirs in the coastal shallow-water zone, in a relatively deep-water zone - isochronous clinoform formations of the achimov strata. Within the researched territory, the characteristic of the established oil and gas potential of the complex is presented, on the basis of 3D seismic survey, perspective objects are identified, and their seismogeological characteristics are given.


2003 ◽  
Vol 20 (1) ◽  
pp. 749-759 ◽  
Author(s):  
David E. Lawton ◽  
Paul P. Roberson

abstractThe Johnston Field is a dry gas accumulation located within blocks 43/26a and 43/27a of the UK Southern North Sea. The discovery well was drilled in 1990 and after the drilling of one appraisal well in 1991, a development plan was submitted and approved in 1993. Initially two development wells were drilled from a four slot sub-sea template, with commercial production commencing in October 1994. A further horizontal development well was added to the field in 1997.The field has a structural trap, fault bounded to the SW and dip-closed to the north, east and south. This field geometry has been established using high quality 3D seismic data, enhanced by seismic attribute analysis. The sandstone reservoir interval consists of the Early Permian, Lower Leman Sandstone Formation of the Upper Rotliegend Group. This reservoir consists of a series of interbedded aeolian dune, fluvial, and clastic sabkha lithofacies. The quality of the reservoir is variable and is principally controlled by the distribution of the various lithofacies. The top seal and fault bounding side seal are provided by the overlying clay stone of the Silverpit Shale Formation and the evaporite dominated Zechstein Supergroup.The field has been developed using a phased development plan, with the acquisition of a 3D seismic survey allowing for the optimized drilling of a high deliverability horizontal well.Current mapped gas initially-in-place estimates for the field are between 360 and 403 BCF, with an estimated recovery factor of between 60 and 75%.


2020 ◽  
Vol 28 ◽  
pp. 1-27 ◽  
Author(s):  
David R. Cox ◽  
Paul C. Knutz ◽  
D. Calvin Campbell ◽  
John R. Hopper ◽  
Andrew M. W. Newton ◽  
...  

Abstract. A geohazard assessment workflow is presented that maximizes the use of 3D seismic reflection data to improve the safety and success of offshore scientific drilling. This workflow has been implemented for International Ocean Discovery Program (IODP) Proposal 909 that aims to core seven sites with targets between 300 and 1000 m below seabed across the north-western Greenland continental shelf. This glaciated margin is a frontier petroleum province containing potential drilling hazards that must be avoided during drilling. Modern seismic interpretation techniques are used to identify, map and spatially analyse seismic features that may represent subsurface drilling hazards, such as seabed structures, faults, fluids and challenging lithologies. These hazards are compared against the spatial distribution of stratigraphic targets to guide site selection and minimize risk. The 3D seismic geohazard assessment specifically advanced the proposal by providing a more detailed and spatially extensive understanding of hazard distribution that was used to confidently select eight new site locations, abandon four others and fine-tune sites originally selected using 2D seismic data. Had several of the more challenging areas targeted by this proposal only been covered by 2D seismic data, it is likely that they would have been abandoned, restricting access to stratigraphic targets. The results informed the targeted location of an ultra-high-resolution 2D seismic survey by minimizing acquisition in unnecessary areas, saving valuable resources. With future IODP missions targeting similarly challenging frontier environments where 3D seismic data are available, this workflow provides a template for geohazard assessments that will enhance the success of future scientific drilling.


Sign in / Sign up

Export Citation Format

Share Document