scholarly journals Transgenerational effects of famine: initiation of the offsprings’ study of Leningrad Siege survivors

2021 ◽  
Vol 69 ◽  
Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 681
Author(s):  
Changchun Dai ◽  
Michele Ricupero ◽  
Zequn Wang ◽  
Nicolas Desneux ◽  
Antonio Biondi ◽  
...  

The harlequin ladybird, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), is a generalist predator and an effective biocontrol agent of various insect pests that has been exploited for the control of aphid pests in the greenhouse and field. However, insecticides are widely used to control aphid pests worldwide and the potential non-target effects of sulfoxaflor and imidacloprid for controlling aphid pests towards this biocontrol agent are little known. Although both sulfoxaflor and imidacloprid act on nicotinic acetylcholine receptors of insects, sulfoxaflor has a novel chemical structure compared with neonicotinoids. We assessed the lethal, sublethal and transgenerational effects of sulfoxaflor and imidacloprid on H. axyridis simultaneously exposed via ingestion of contaminated prey and via residual contact on the host plant at LC20 and LC50 doses estimated for the cotton aphid. Imidacloprid significantly reduced the survival of H. axyridis adults compared to sulfoxaflor at the same lethal concentration against cotton aphid. Both concentrations of imidacloprid and sulfoxaflor reduced the proportion of ovipositing females, and both concentrations of imidacloprid and sulfoxaflor, except LC20 dose of sulfoxaflor, reduced the fecundity and fertility of the parental generation. In the progeny of imidacloprid- and sulfoxaflor-exposed parents, both tested LC50 concentrations significantly decreased the juvenile survival rate, and both concentrations of imidacloprid and sulfoxaflor, except LC20 dose of sulfoxaflor, prolonged the development time. Our findings provide evidence of the negative influence of imidacloprid and sulfoxaflor at low lethal concentrations on the harlequin ladybird and on the progeny of exposed individuals, i.e., transgenerational effects. Hence, these findings stress the importance of optimizing the applications of imidacloprid and sulfoxaflor for the control of aphid pests, aiming at preserving the biocontrol services provided by H. axyridis throughout the integrated pest management approach.


2021 ◽  
Vol 8 (7) ◽  
pp. 2002715
Author(s):  
Yingyun Gong ◽  
Yanfeng Xue ◽  
Xin Li ◽  
Zhao Zhang ◽  
Wenjun Zhou ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haipei Liu ◽  
Amanda J. Able ◽  
Jason A. Able

AbstractWater-deficit stress negatively affects wheat yield and quality. Abiotic stress on parental plants during reproduction may have transgenerational effects on progeny. Here we investigated the transgenerational influence of pre-anthesis water-deficit stress by detailed analysis of the yield components, grain quality traits, and physiological traits in durum wheat. Next-generation sequencing analysis profiled the small RNA-omics, mRNA transcriptomics, and mRNA degradomics in first generation progeny. Parental water-deficit stress had positive impacts on the progeny for traits including harvest index and protein content in the less stress-tolerant variety. Small RNA-seq identified 1739 conserved and 774 novel microRNAs (miRNAs). Transcriptome-seq characterised the expression of 66,559 genes while degradome-seq profiled the miRNA-guided mRNA cleavage dynamics. Differentially expressed miRNAs and genes were identified, with significant regulatory patterns subject to trans- and inter-generational stress. Integrated analysis using three omics platforms revealed significant biological interactions between stress-responsive miRNA and targets, with transgenerational stress tolerance potentially contributed via pathways such as hormone signalling and nutrient metabolism. Our study provides the first confirmation of the transgenerational effects of water-deficit stress in durum wheat. New insights gained at the molecular level indicate that key miRNA-mRNA modules are candidates for transgenerational stress improvement.


2020 ◽  
Vol 93 ◽  
pp. 178-190 ◽  
Author(s):  
Kailiang Li ◽  
Monika Liszka ◽  
Changqing Zhou ◽  
Emily Brehm ◽  
Jodi A. Flaws ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document