scholarly journals Small RNAs and their targets are associated with the transgenerational effects of water-deficit stress in durum wheat

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haipei Liu ◽  
Amanda J. Able ◽  
Jason A. Able

AbstractWater-deficit stress negatively affects wheat yield and quality. Abiotic stress on parental plants during reproduction may have transgenerational effects on progeny. Here we investigated the transgenerational influence of pre-anthesis water-deficit stress by detailed analysis of the yield components, grain quality traits, and physiological traits in durum wheat. Next-generation sequencing analysis profiled the small RNA-omics, mRNA transcriptomics, and mRNA degradomics in first generation progeny. Parental water-deficit stress had positive impacts on the progeny for traits including harvest index and protein content in the less stress-tolerant variety. Small RNA-seq identified 1739 conserved and 774 novel microRNAs (miRNAs). Transcriptome-seq characterised the expression of 66,559 genes while degradome-seq profiled the miRNA-guided mRNA cleavage dynamics. Differentially expressed miRNAs and genes were identified, with significant regulatory patterns subject to trans- and inter-generational stress. Integrated analysis using three omics platforms revealed significant biological interactions between stress-responsive miRNA and targets, with transgenerational stress tolerance potentially contributed via pathways such as hormone signalling and nutrient metabolism. Our study provides the first confirmation of the transgenerational effects of water-deficit stress in durum wheat. New insights gained at the molecular level indicate that key miRNA-mRNA modules are candidates for transgenerational stress improvement.

2017 ◽  
Vol 44 (5) ◽  
pp. 538 ◽  
Author(s):  
Haipei Liu ◽  
Amanda J. Able ◽  
Jason A. Able

In Mediterranean environments, water-deficit stress that occurs before anthesis significantly limits durum wheat (Triticum turgidum L. ssp. durum) production. Stress tolerant and stress sensitive durum varieties exhibit genotypic differences in their response to pre-anthesis water-deficit stress as reflected by yield performance, but our knowledge of the mechanisms underlying tolerance is limited. We have previously identified stress responsive durum microRNAs (miRNAs) that could contribute to water-deficit stress tolerance by mediating post-transcriptional silencing of genes that lead to stress adaptation (e.g. miR160 and its targets ARF8 (auxin response factor 8) and ARF18). However, the temporal regulation pattern of miR160-ARFs after induction of pre-anthesis water-deficit stress in sensitive and tolerant varieties remains unknown. Here, the physiological responses of four durum genotypes are described by chlorophyll content, leaf relative water content, and stomatal conductance at seven time-points during water-deficit stress from booting to anthesis. qPCR examination of miR160, ARF8 and ARF18 at these time-points revealed a complex stress responsive regulatory pattern, in the flag leaf and the head, subject to genotype. Harvest components and morphological traits measured at maturity confirmed the stress tolerance level of these four varieties for agronomic performance, and their potential association with the physiological responses. In general, the distinct regulatory pattern of miR160-ARFs among stress tolerant and sensitive durum varieties suggests that miRNA-mediated molecular pathways may contribute to the genotypic differences in the physiological traits, ultimately affecting yield components (e.g. the maintenance of harvest index and grain number).


2020 ◽  
Vol 21 (17) ◽  
pp. 6017 ◽  
Author(s):  
Haipei Liu ◽  
Amanda J. Able ◽  
Jason A. Able

Water-deficit and heat stress negatively impact crop production. Mechanisms underlying the response of durum wheat to such stresses are not well understood. With the new durum wheat genome assembly, we conducted the first multi-omics analysis with next-generation sequencing, providing a comprehensive description of the durum wheat small RNAome (sRNAome), mRNA transcriptome, and degradome. Single and combined water-deficit and heat stress were applied to stress-tolerant and -sensitive Australian genotypes to study their response at multiple time-points during reproduction. Analysis of 120 sRNA libraries identified 523 microRNAs (miRNAs), of which 55 were novel. Differentially expressed miRNAs (DEMs) were identified that had significantly altered expression subject to stress type, genotype, and time-point. Transcriptome sequencing identified 49,436 genes, with differentially expressed genes (DEGs) linked to processes associated with hormone homeostasis, photosynthesis, and signaling. With the first durum wheat degradome report, over 100,000 transcript target sites were characterized, and new miRNA-mRNA regulatory pairs were discovered. Integrated omics analysis identified key miRNA-mRNA modules (particularly, novel pairs of miRNAs and transcription factors) with antagonistic regulatory patterns subject to different stresses. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis revealed significant roles in plant growth and stress adaptation. Our research provides novel and fundamental knowledge, at the whole-genome level, for transcriptional and post-transcriptional stress regulation in durum wheat.


2019 ◽  
Vol 11 (32) ◽  
pp. 88-99
Author(s):  
Ali Akbar Asadi ◽  
Mostafa Valizadeh ◽  
Seyed Abolghasem Mohammadi ◽  
Manochehr Khodarahmi ◽  
◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 189 ◽  
Author(s):  
Haipei Liu ◽  
Amanda J. Able ◽  
Jason A. Able

Water deficiency and heat stress can severely limit crop production and quality. Stress imposed on the parents during reproduction could have transgenerational effects on their progeny. Seeds with different origins can vary significantly in their germination and early growth. Here, we investigated how water-deficit and heat stress on parental durum wheat plants affected seedling establishment of the subsequent generation. One stress-tolerant and one stress-sensitive Australian durum genotype were used. Seeds were collected from parents with or without exposure to stress during reproduction. Generally, stress on the previous generation negatively affected seed germination and seedling vigour, but to a lesser extent in the tolerant variety. Small RNA sequencing utilising the new durum genome assembly revealed significant differences in microRNA (miRNA) expression in the two genotypes. A bioinformatics approach was used to identify multiple miRNA targets which have critical molecular functions in stress adaptation and plant development and could therefore contribute to the phenotypic differences observed. Our data provide the first confirmation of the transgenerational effects of reproductive-stage stress on germination and seedling establishment in durum wheat. New insights gained on the epigenetic level indicate that durum miRNAs could be key factors in optimising seed vigour for breeding superior germplasm and/or varieties.


2015 ◽  
Vol 66 (10) ◽  
pp. 1024 ◽  
Author(s):  
Haipei Liu ◽  
Iain R. Searle ◽  
Diane E. Mather ◽  
Amanda J. Able ◽  
Jason A. Able

Durum wheat production in southern Australia is limited when water deficit occurs immediately before and during anthesis. This study was conducted to determine the effect of genotypic variation on various yield, morphological and physiological responses to pre-anthesis water-deficit stress by evaluating 20 durum wheat (Triticum turgidum L. ssp. durum) genotypes over 2 years of glasshouse experiments. Grain number was the major yield component that affected yield under pre-anthesis water-deficit stress. Genotypes with less yield reduction also had less reduction in chlorophyll content, relative water content and leaf water potential, suggesting that durum genotypes tolerant of water-deficit stress maintain a higher photosynthetic rate and leaf water status. Weak to moderate positive correlations of morphological traits, including plant height and fertile tiller number, with grain number and biomass make the evaluation of high-yielding genotypes in rainfed conditions possible. Morphological traits (such as plant height and tiller number) and physiological traits (such as chlorophyll content, relative water content and leaf water potential) could therefore be considered potential indicators for indirect selection of durum wheat with water-deficit stress tolerance under Mediterranean conditions.


2014 ◽  
Vol 1 (1) ◽  
pp. 20-24
Author(s):  
Gader Ghaffari ◽  
Farhad Baghbani ◽  
Behnam Tahmasebpour

In order to group winter rapeseed cultivars according to evaluated traits, an experiment was conducted in the Research Greenhouse of Agriculture Faculty, University of Tabriz - IRAN. In the experiment were included 12 cultivars of winter rapeseed and 3 levels of water deficit stress. Gypsum blocks were used to monitor soil moisture. Water deficit stress was imposed from stem elongation to physiological maturity. According to the principal component analysis, five principal components were chosen with greater eigenvalue (more than 0.7) that are including 81.34% of the primeval variance of variables. The first component that explained the 48.02% of total variance had the high eigenvalue. The second component could justify about 13.64% of total variance and had positive association with leaf water potential and proline content and had negative relationship with leaf stomatal conductivity. The third, fourth and fifth components expressed around, 10.18, 4.83 and 4.68% of the total variance respectively. The third component had the high eigenvalue for plant dry weight. The fourth component put 1000-seed weight, seed yield, Silique per Plant and root dry weight against plant dry weight, chlorophyll fluorescence and leaf water potential. The fifth component had the high eigenvalue for root dry weight, root volume and 1000-seed weight.


2021 ◽  
Vol 22 (10) ◽  
pp. 5314
Author(s):  
Marlon-Schylor L. le Roux ◽  
Nicolas Francois V. Burger ◽  
Maré Vlok ◽  
Karl J. Kunert ◽  
Christopher A. Cullis ◽  
...  

Drought response in wheat is considered a highly complex process, since it is a multigenic trait; nevertheless, breeding programs are continuously searching for new wheat varieties with characteristics for drought tolerance. In a previous study, we demonstrated the effectiveness of a mutant known as RYNO3936 that could survive 14 days without water. In this study, we reveal another mutant known as BIG8-1 that can endure severe water deficit stress (21 days without water) with superior drought response characteristics. Phenotypically, the mutant plants had broader leaves, including a densely packed fibrous root architecture that was not visible in the WT parent plants. During mild (day 7) drought stress, the mutant could maintain its relative water content, chlorophyll content, maximum quantum yield of PSII (Fv/Fm) and stomatal conductance, with no phenotypic symptoms such as wilting or senescence despite a decrease in soil moisture content. It was only during moderate (day 14) and severe (day 21) water deficit stress that a decline in those variables was evident. Furthermore, the mutant plants also displayed a unique preservation of metabolic activity, which was confirmed by assessing the accumulation of free amino acids and increase of antioxidative enzymes (peroxidases and glutathione S-transferase). Proteome reshuffling was also observed, allowing slow degradation of essential proteins such as RuBisCO during water deficit stress. The LC-MS/MS data revealed a high abundance of proteins involved in energy and photosynthesis under well-watered conditions, particularly Serpin-Z2A and Z2B, SGT1 and Calnexin-like protein. However, after 21 days of water stress, the mutants expressed ABC transporter permeases and xylanase inhibitor protein, which are involved in the transport of amino acids and protecting cells, respectively. This study characterizes a new mutant BIG8-1 with drought-tolerant characteristics suited for breeding programs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. A. Gomaa ◽  
Essam E. Kandil ◽  
Atef A. M. Zen El-Dein ◽  
Mamdouh E. M. Abou-Donia ◽  
Hayssam M. Ali ◽  
...  

AbstractIn Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation.


Sign in / Sign up

Export Citation Format

Share Document