scholarly journals Electromagnetic interference modeling for AMCS based on frequency analysis of electrostatic discharge.

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
M.S. Shkinderov ◽  
◽  
R.M. Nazarov ◽  
Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 616
Author(s):  
Wipoo Sriseubsai ◽  
Arsarin Tippayakraisorn ◽  
Jun Wei Lim

This study focuses on the electromagnetic interference shielding effectiveness (EMI SE), dissipation of electrostatic discharge (ESD), and surface resistivity of polymer blends between polycarbonate (PC) and acrylonitrile–butadiene–styrene (ABS) filled with carbon black powder (CBp) and carbon black masterbatch (CBm). The mixtures of PC/ABS/CB composites were prepared by the injection molding for the 4-mm thickness of the specimen. The D-optimal mixture design was applied in this experiment. The EMI SE was measured at the frequency of 800 and 900 MHz with a network analyzer, MIL-STD-285. The result showed that the EMI SE was increased when the amount of filler increased. The surface resistivity of the composites was determined according to the ASTM D257. It was found that the surface resistivity of the plastic with no additives was 1012 Ω/ square. When the amount of fillers was added, the surface resistivity of plastic composites decreased to the range of 106–1011 Ω/square, which was suitable for the application without the electrostatic discharge. The optimization of multi-response showed using high amounts of PC and CB was the best mixture of this research.


2017 ◽  
Vol 26 (2) ◽  
pp. 118
Author(s):  
Jelena Dikun ◽  
Emel Onal

The aim of this paper is to point out the advantages of the use of the time-frequency analysis in the digital processing of waveforms recorded in high voltage impulse tests. Impulse voltage tests are essential to inspect and test insulation integrity of high voltage apparatus. On the other hand, generated impulse currents are used for different test applications such as investigation of high current effects, electromagnetic interference (EMI) testing, etc. Obtained voltage and current waveforms usually have some sort of interferences originated from the different sources. These interferences have to be removed from the original impulse data in order to evaluate the waveform characteristics precisely. When the interference level is high enough, it might not be possible to distinguish signal parameters from the recorded data. Conventional filtering methods cannot be useful for some interference like white noise. In that case, time-frequency filtering methods might be necessary. In this study, the wavelet analysis, which is a powerful time-frequency signal processing tool, is used to recognize the noise of impulse current and voltage data. Thus, the noise sources can be determined by short time Fourier Transform, and a coherence approach is used to determine the bandwidth of noises.


2021 ◽  
Vol 54 (27) ◽  
pp. 275002
Author(s):  
Bai-Peng Song ◽  
Run-Dong Zhou ◽  
Xiong Yang ◽  
Shu Zhang ◽  
Ning Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document