scholarly journals Review on Treatment of Acid Mine Drainage with Waste Materials: A Novel Approach

2018 ◽  
Vol 20 (3) ◽  
pp. 512-528 ◽  

<p>The present study systematically and comprehensively reviewed different aspects of treating Acid Mine Drainage (AMD) with active treatment and waste materials. The work also critically reviews the status and the factors associated with the treatment process. Although, conventional active methods are very efficient but they are mainly associated with costly material as well as high maintenance cost which enhances the cost of entire treatment system. Waste materials such as fly ash, metallurgical slag, zero valent iron (ZVI), cement kiln dust (CKD), organic waste such as peat humic agent (PHA) and rice husk can be efficiently used for the treatment of AMD. However, efficiency of different waste material varied from each other due to the variation in their physical and chemical characteristics. The results from the investigation showed that fly ash, metallurgical slag and CKD raise the pH of acidic solution more, in comparison to ZVI and organic waste, due to their richness in lime content. Furthermore, fly ash can be efficiently converted and utilized in its other derivative such as chemically modified fly ash and zeolite. Efficiency of ZVI is hindered by the presence of higher concentration of total dissolved solids. PHA can treat AMD that is mild acidic in nature. Besides, long retention time is required for the removal of heavy metals and sulfur with organic waste and sulfate reducing bacteria (SRB). The study also potentially reviewed that metal removal from AMD varied due to composition of AMD and the characteristics of waste materials. However, waste materials demand more attention for its practical applicability in field conditions due to its richness, higher possibility for recycling and reuse, low installation cost and harmless nature towards the environment.</p>

2017 ◽  
Vol 8 (12) ◽  
pp. 4457-4466 ◽  
Author(s):  
S. Nfissi ◽  
S. Alikouss ◽  
Y. Zerhouni ◽  
R. Hakkou ◽  
M. Benzaazoua ◽  
...  

2021 ◽  
Vol 11 (9) ◽  
pp. 3910
Author(s):  
Saba Shirin ◽  
Aarif Jamal ◽  
Christina Emmanouil ◽  
Akhilesh Kumar Yadav

Acid mine drainage (AMD) occurs naturally in abandoned coal mines, and it contains hazardous toxic elements in varying concentrations. In the present research, AMD samples collected from an abandoned mine were treated with fly ash samples from four thermal power plants in Singrauli Coalfield in the proximate area, at optimized concentrations. The AMD samples were analyzed for physicochemical parameters and metal content before and after fly ash treatment. Morphological, geochemical and mineralogical characterization of the fly ash was performed using SEM, XRF and XRD. This laboratory-scale investigation indicated that fly ash had appreciable neutralization potential, increasing AMD pH and decreasing elemental and sulfate concentrations. Therefore, fly ash may be effectively used for AMD neutralization, and its suitability for the management of coalfield AMD pits should be assessed further.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shigeshi Fuchida ◽  
Kohei Suzuki ◽  
Tatsuya Kato ◽  
Masakazu Kadokura ◽  
Chiharu Tokoro

AbstractSubsurface limestone beds (SLBs) are used as a passive treatment technique to remove toxic metals from acid mine drainage (AMD). In this study, we investigated the mechanisms and thermodynamics of metal (manganese, copper, zinc, cadmium, and lead) precipitation in the SLB installed at the Motokura Mine. Field surveys in 2017 and 2018 showed that the pH of the SLB influent (initially 5–6) increased to approximately 8 in the drain between 24 and 45 m from the inlet. This increase was caused by limestone dissolution and resulted in the precipitation of hydroxides and/or carbonates of copper, zinc, and lead, as expected from theoretical calculations. Manganese and cadmium were removed within a pH range of approximately 7–8, which was lower than the pH at which they normally precipitate as hydroxides (pH 9–10). X-ray absorption near-edge structure analysis of the sediment indicated that δ-MnO2, which has a high cation-exchange capacity, was the predominant tetravalent manganese compound in the SLB rather than trivalent compound (MnOOH). Biological analysis indicates that microorganism activity of the manganese-oxidizing bacteria in the SLB provided an opportunity for δ-MnO2 formation, after which cadmium was removed by surface complexation with MnO2 (≡ MnOH0 + Cd2+  ⇄  ≡ MnOCd+  +  H+). These findings show that biological agents contributed to the precipitation of manganese and cadmium in the SLB, and suggest that their utilization could enhance the removal performance of the SLB.


2010 ◽  
Vol 106 (1/2) ◽  
Author(s):  
Wicleffe Musingarimi ◽  
Marla Tuffin ◽  
Donald Cowan

An arsenic resistant Bacillus sp. UWC was isolated from fly ash acid mine drainage (FA-AMD) neutralised solids. A genomic library was prepared and screened in an arsenic sensitive mutant Escherichia coli strain for the presence of arsenic resistance (ars) genes. Sequence analysis of a clone conferring resistance to both sodium arsenite and sodium arsenate revealed homologues to the arsR (regulatory repressor), arsB (membrane located arsenite pump), arsC (arsenate reductase), arsD (second regulatory repressor and a metallochaperone) and arsA (ATPase) genes from known arsenic resistance operons. The Bacillus sp. UWC arsRBCDA genes were shown to be arranged in an unusual manner with the arsDA genes immediately downstream of arsC.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 596 ◽  
Author(s):  
Yongwei Song ◽  
Heru Wang ◽  
Jun Yang ◽  
Yanxiao Cao

Acid mine drainage is highly acidic and contains large quantities of Fe and heavy metal elements. Thus, it is important to promote the transformation of Fe into secondary iron minerals that exhibit strong heavy-metal removal abilities. Using simulated acid mine drainage, this work analyzes the influence of monovalent cations (K+, NH4+, and Na+) on the Fe2+ oxidation and total Fe deposition efficiencies, as well as the phases of secondary iron minerals in an Acidithiobacillus ferrooxidans system. It also compares the Cr(VI) (K2Cr2O7) and As(III) (As2O3) removal efficiencies of different schwertmannites. The results indicated that high concentrations of monovalent cations (NH4+ ≥ 320 mmol/L, and Na+ ≥ 1600 mmol/L) inhibited the biological oxidation of Fe2+. Moreover, the mineralizing abilities of the three cations differed (K+ > NH4+ > Na+), with cumulative Fe deposition efficiencies of 58.7%, 28.1%, and 18.6%, respectively [n(M) = 53.3 mmol/L, cultivation time = 96 h]. Additionally, at initial Cr(VI) and As(III) concentrations of 10 and 1 mg/L, respectively, the Cr(VI) and As(III) removal efficiencies exhibited by schwertmannites acquired by the three mineralization systems differed [n(Na) = 53.3 > n(NH4) = 53.3 > n(K) = 0.8 mmol/L]. Overall, the analytical results suggested that the removal efficiency of toxic elements was mainly influenced by the apparent structure, particle size, and specific surface area of schwertmannite.


2020 ◽  
Vol 159 ◽  
pp. 106611 ◽  
Author(s):  
Rosicky Methode Kalombe ◽  
Tunde Victor Ojumu ◽  
Vinny Ndjate Katambwe ◽  
Michael Nzadi ◽  
Denzil Bent ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document