iron minerals
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 53)

H-INDEX

34
(FIVE YEARS 5)

Author(s):  
Yongsheng Lu ◽  
Wei Feng ◽  
Hui Liu ◽  
Chen Chen ◽  
Yunfeng Xu ◽  
...  

Vivianite is a promising phosphorus recovery solution that has the potential to simultaneously relieve the phosphorus shortage and phosphorus pollution. By producing vivianite, dissimilatory iron reducing bacteria may substantially enhance...


Geology ◽  
2021 ◽  
Author(s):  
Alec M. Hutchings ◽  
Alexandra V. Turchyn

Iron speciation in ancient sedimentary rocks is widely used to reconstruct oceanic redox conditions over geological time, specifically to assess the extent of oxic, euxinic (anoxic containing sulfide), and ferruginous (anoxic containing iron) conditions. We explore how post-depositional sedimentary processes can skew particular geochemical signals in the rock record. One such process is when aqueous sulfide—including that produced in the sediment column—reacts with sedimentary iron, converting non-sulfide, highly reactive iron minerals to iron-sulfide minerals; this can lead to increased preservation of iron as pyrite and an overestimation of seafloor euxinia. We show that sedimentary rocks with higher (>5 wt%) total iron content are more buffered to this effect and thus are a more reliable indicator of true water-column euxinia. When considering this effect in the geological past, we estimate that true euxinia in the mid-Proterozoic may have been as much as fourfold less than previously thought—more in line with other recent paleoredox proxies not based on iron minerals. Marine iron and sulfate concentrations were more equivalent in Proterozoic–Neoproterozoic oceans, suggesting this time period was particularly susceptible to this post-depositional alteration, explaining the extent of euxinia suggested for this geological interval.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hamza El-Hosainy ◽  
Rafat Tahawy ◽  
Mohamed Esmat ◽  
Maged El-Kemary ◽  
Yusuke Ide

The development of efficient and cost-effective solar photocatalysts capable of producing hydrogen from formic acid as a hydrogen storage medium is still a challenging issue. Herein, we report that iron minerals, ferric iron hydroxy sulfates (FHS), immobilized on a natural layered silicate, magadiite, can be used as a photocatalyst to produce hydrogen from formic acid under irradiation with solar simulator. The material exhibits the hydrogen production rate of 470 μmol g−1 h−1, which is considerably higher than that obtained on other iron minerals and comparable to that obtained on precious metal-based photocatalyst ever reported. The present result may open a way to design efficient photocatalyst for hydrogen production from formic acid in an economically and environmentally friendly way.


Author(s):  
Dingding Wu ◽  
Shuhan Huang ◽  
Xuxiang Zhang ◽  
Hongqiang Ren ◽  
Xin Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document