Recursive-operator method in vibration problems for rod systems

2009 ◽  
Vol 44 (6) ◽  
pp. 915-926 ◽  
Author(s):  
E. V. Rozhkova
2018 ◽  
pp. 44-47
Author(s):  
F.J. Тurayev

In this paper, mathematical model of nonlinear vibration problems with fluid flows through pipelines have been developed. Using the Bubnov–Galerkin method for the boundary conditions, the resulting nonlinear integro-differential equations with partial derivatives are reduced to solving systems of nonlinear ordinary integro-differential equations with both constant and variable coefficients as functions of time.A system of algebraic equations is obtained according to numerical method for the unknowns. The influence of the singularity of heredity kernels on the vibrations of structures possessing viscoelastic properties is numerically investigated.It was found that the determination of the effect of viscoelastic properties of the construction material on vibrations of the pipeline with a flowing liquid requires applying weakly singular hereditary kernels with an Abel type singularity.


Author(s):  
Yasuhisa Abe ◽  
David Boilley ◽  
Quentin Hourdillé ◽  
Caiwan Shen

Abstract A new framework is proposed for the study of collisions between very heavy ions which lead to the synthesis of Super-Heavy Elements (SHE), to address the fusion hindrance phenomenon. The dynamics of the reaction is studied in terms of collective degrees of freedom undergoing relaxation processes with different time scales. The Nakajima-Zwanzig projection operator method is employed to eliminate fast variable and derive a dynamical equation for the reduced system with only slow variables. There, the time evolution operator is renormalised and an inhomogeneous term appears, which represents a propagation of the given initial distribution. The term results in a slip to the initial values of the slow variables. We expect that gives a dynamical origin of the so-called “injection point s” introduced by Swiatecki et al in order to reproduce absolute values of measured cross sections for SHE. A formula for the slip is given in terms of physical parameters of the system, which confirms the results recently obtained with a Langevin equation, and permits us to compare various incident channels.


2021 ◽  
Vol 384 ◽  
pp. 113963
Author(s):  
Huilong Ren ◽  
Xiaoying Zhuang ◽  
Nguyen-Thoi Trung ◽  
Timon Rabczuk

Sign in / Sign up

Export Citation Format

Share Document