Pochhammer-Cree Longitudinal Waves: Anomalous Polarization

2019 ◽  
Vol 54 (4) ◽  
pp. 598-606 ◽  
Author(s):  
A. V. Ilyashenko
2021 ◽  
pp. 108128652110108
Author(s):  
Emilio Turco ◽  
Emilio Barchiesi ◽  
Francesco dell’Isola

This contribution presents the results of a campaign of numerical simulations aimed at better understanding the propagation of longitudinal waves in pantographic beams within the large-deformation regime. Initially, we recall the key features of a Lagrangian discrete spring model, which was introduced in previous works and that was tested extensively as capable of accurately forecasting the mechanical response of structures based on the pantographic motif, both in statics and dynamics. Successively, a stepwise integration scheme used to solve equations of motions is briefly discussed. The key content of the present contribution concerns the thorough presentation of some selected numerical simulations, which focus in particular on the propagation of stretch profiles induced by impulsive loads. The study takes into account different tests, by varying the number of unit cells, i.e., the total length of the system, spring stiffnesses, the shape of the impulse, as well as its properties such as duration and peak amplitude, and boundary conditions. Some conjectures about the form of traveling waves are formulated, to be confirmed by both further numerical simulations and analytical investigations.


2021 ◽  
Vol 396 ◽  
pp. 127232
Author(s):  
Zhu-Long Xu ◽  
Shao-Feng Xu ◽  
Kuo-Chih Chuang
Keyword(s):  

2017 ◽  
Vol 255 (3) ◽  
pp. 1700371 ◽  
Author(s):  
Lian Cui ◽  
Fenghui Cao ◽  
Haiying Cui ◽  
Yuchun Li ◽  
Rui Yang

1974 ◽  
Vol 11 (1) ◽  
pp. 37-49
Author(s):  
R. J. Papa ◽  
P. Lindstrom

There are several practical situations in partially ionized plasmas when both collisionless (Landau) damping and electron-neutral collisions contribute to the attenuation of longitudinal waves. The longitudinal-wave dispersion relation is derived from Maxwell's equations and the linearized Boltzmann equation, in which electron-neutral collisions are represented by a Bhatnagar–Gross–Krook model that conserves particles locally. (The dispersion relation predicts that, for a given signal frequency ώ), an infinite number of complex wavenumbers kn can exist. Using Fourier–Laplace transform techniques, an integral representation for the electric field of the longitudinal waves is readily derived. Then, using theorems from complex variable theory, a modal expansion of the electric field can be made in terms of an infinite sum of confluent hypergeometric functions, whose arguments are proportional to the complex wavenumbers kn. It is demonstrated numerically that the spatial integral of the square of the electric field amplitude decreases as the electron-neutral collision frequency increases. Also, the amount of energy contained in the first few (lowest) modes, and the coupling between the modes, is examined as a function of plasma frequency, signal frequency and collision frequency.


Sign in / Sign up

Export Citation Format

Share Document