Identification of the genes promoting awnedness in the Triticum Aestivum/Aegilops Umbellulata introgressive line

2012 ◽  
Vol 46 (3) ◽  
pp. 136-143 ◽  
Author(s):  
M. Z. Antonyuk ◽  
D. O. Prokopyk ◽  
V. S. Martynenko ◽  
T. K. Ternovska
2007 ◽  
Vol 55 (6) ◽  
pp. 849-859 ◽  
Author(s):  
Parveen Chhuneja ◽  
Satinder Kaur ◽  
R. K. Goel ◽  
M. Aghaee-Sarbarzeh ◽  
M. Prashar ◽  
...  

1983 ◽  
Vol 67 (1) ◽  
pp. 53-58 ◽  
Author(s):  
H. M. Stinissen ◽  
W. J. Peumans ◽  
C. N. Law ◽  
P. I. Payne

1967 ◽  
Vol 9 (1) ◽  
pp. 111-114 ◽  
Author(s):  
Gordon Kimber

Six lines have been isolated in which individual chromosomes of Ae. umbellulata have been added to the normal complement of T. aestivum. The phenotype and cytology of these lines and of the material employed in their production is briefly described. The use of some of these lines in investigations on the evolution of the diploid Aegilops species and in the introduction of useful alien variation into T. aestivum is mentioned.


1983 ◽  
Vol 25 (1) ◽  
pp. 76-84 ◽  
Author(s):  
D. C. Jewell ◽  
C. J. Driscoll

Nine of the 14 possible single chromosome addition lines of the tetraploid species Aegilops variabilis Eig. (CuCuSvSv) to Triticum aestivum L. cv. Chinese Spring (AA BB DD) have been isolated and identified. The nine Aegilops variabilis addition lines were compared with the available addition lines of Aegilops umbellulata (CuCu) and Aegilops longissima (SvSv) to further elucidate the relationship between these two diploids and the tetraploid Aegilops variabilis. Differences were observed between the same chromosomes isolated from the diploid and the tetraploid and discussed. After taking into account banding pattern polymorphisms, Aegilops umbellulata was confirmed as the donor of the Cu genome, and evidence indicated that Aegilops longissima probably is the donor of the other genome (Sv) in the tetraploid Aegilops variabilis.


Genome ◽  
2005 ◽  
Vol 48 (6) ◽  
pp. 1070-1082 ◽  
Author(s):  
Annamária Schneider ◽  
Gabriella Linc ◽  
István Molnár ◽  
Márta Molnár-Láng

The aim of the experiments was to produce and identify different Triticum aestivum – Aegilops biuncialis disomic addition lines. To facilitate the exact identification of the Ae. biuncialis chromosomes in these Triticum aestivum – Ae. biuncialis disomic additions, it was necessary to analyze the fluorescence in situ hybridization (FISH) pattern of Ae. biuncialis (2n = 4x = 28, UbUbMbMb), comparing it with the diploid progenitors (Aegilops umbellulata, 2n = 2x = 14, UU and Aegilops comosa, 2n = 2x = 14, MM). To identify the Ae. biuncialis chromosomes, FISH was carried out using 2 DNA clones (pSc119.2 and pAs1) on Ae. biuncialis and its 2 diploid progenitor species. Differences in the hybridization patterns of all chromosomes were observed among the 4 Ae. umbellulata accessions, the 4 Ae. comosa accessions, and the 3 Ae. biuncialis accessions analyzed. The hybridization pattern of the M genome was more variable than that of the U genome. Five different wheat – Ae. biuncialis addition lines were produced from the wheat – Ae. biuncialis amphiploids produced earlier in Martonvásár. The 2M, 3M, 7M, 3U, and 5U chromosome pairs were identified with FISH using 3 repetitive DNA clones (pSc119.2, pAs1, and pTa71) in the disomic chromosome additions produced. Genomic in situ hybridization (GISH) was used to differentiate the Ae. biuncialis chromosomes from wheat, but no chromosome rearrangements between wheat and Ae. biuncialis were detected in the addition lines.Key words: Triticum aestivum, Aegilops biuncialis, fluorescence in situ hybridization, genomic in situ hybridization, wheat – Aegilops biuncialis addition lines.


Genetics ◽  
1972 ◽  
Vol 72 (1) ◽  
pp. 77-86
Author(s):  
T Macdonald ◽  
H H Smith

ABSTRACT Zymograms were analyzed of a number of Triticum aestivum derivatives which incorporated a segment of the Aegilops umbellulata chromosome bearing resistance to leaf rust. Evidence has been presented which suggests that genes involved in the production of two peroxidases and a single peptidase are located on the short arm of wheat chromosome 6B. One peroxidase isozyme, attributed to the presence of the Aegilops segment, was seen in only one of the resistant lines (Transfer) and it was postulated that this peroxidase band was present in a suppressed state in a number of lines. Possible differences in the A and B genomes of T. aestivum and T. dicoccum were discussed.


Sign in / Sign up

Export Citation Format

Share Document