scholarly journals Rank-One Approximation of Positive Matrices Based on Methods of Tropical Mathematics

2018 ◽  
Vol 51 (2) ◽  
pp. 133-143
Author(s):  
N. K. Krivulin ◽  
E. Yu. Romanova
Author(s):  
Nikolai K. Krivulin ◽  
◽  
Elizaveta Yu. Romanova ◽  

The problem of rank-one factorization of positive matrices with missing (unspecified) entries is considered where a matrix is approximated by a product of column and row vectors that are subject to box constraints. The problem is reduced to the constrained approximation of the matrix, using the Chebyshev metric in logarithmic scale, by a matrix of unit rank. Furthermore, the approximation problem is formulated in terms of tropical mathematics that deals with the theory and applications of algebraic systems with idempotent addition. By using methods of tropical optimization, direct analytical solutions to the problem are derived for the case of an arbitrary positive matrix and for the case when the matrix does not contain columns (rows) with all entries missing. The results obtained allow one to find the vectors of the factor decomposition by using expressions in a parametric form which is ready for further analysis and immediate calculation. In conclusion, an example of approximate rank-one factorization of a matrix with missing entries is provided.


1970 ◽  
Vol 11 (8) ◽  
pp. 2415-2424 ◽  
Author(s):  
M. Anthea Grubb ◽  
D. B. Pearson

1972 ◽  
Vol 46 ◽  
pp. 97-109
Author(s):  
Susan Williamson

Let k denote the quotient field of a complete discrete rank one valuation ring R of unequal characteristic and let p denote the characteristic of R̅; assume that R contains a primitive pth root of unity, so that the absolute ramification index e of R is a multiple of p — 1, and each Gallois extension K ⊃ k of degree p may be obtained by the adjunction of a pth root.


2020 ◽  
Vol 11 (2) ◽  
pp. 1-33
Author(s):  
Haibing Lu ◽  
Xi Chen ◽  
Junmin Shi ◽  
Jaideep Vaidya ◽  
Vijayalakshmi Atluri ◽  
...  

Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


2021 ◽  
Vol 143 (2) ◽  
pp. 301-335
Author(s):  
Jendrik Voss ◽  
Ionel-Dumitrel Ghiba ◽  
Robert J. Martin ◽  
Patrizio Neff

AbstractWe consider the volumetric-isochoric split in planar isotropic hyperelasticity and give a precise analysis of rank-one convexity criteria for this case, showing that the Legendre-Hadamard ellipticity condition separates and simplifies in a suitable sense. Starting from the classical two-dimensional criterion by Knowles and Sternberg, we can reduce the conditions for rank-one convexity to a family of one-dimensional coupled differential inequalities. In particular, this allows us to derive a simple rank-one convexity classification for generalized Hadamard energies of the type $W(F)=\frac{\mu }{2} \hspace{0.07em} \frac{\lVert F \rVert ^{2}}{\det F}+f(\det F)$ W ( F ) = μ 2 ∥ F ∥ 2 det F + f ( det F ) ; such an energy is rank-one convex if and only if the function $f$ f is convex.


Sign in / Sign up

Export Citation Format

Share Document