Analysis of Climate Change Indicators. Part 1. Eastern Siberia

2019 ◽  
Vol 44 (12) ◽  
pp. 810-817 ◽  
Author(s):  
O. A. Anisimov ◽  
E. L. Zhil’tsova ◽  
K. O. Shapovalova ◽  
A. A. Ershova
2021 ◽  
Vol 65 (3) ◽  
pp. 335-352
Author(s):  
Boris K. Biskaborn ◽  
Biljana Narancic ◽  
Kathleen R. Stoof-Leichsenring ◽  
Lyudmila A. Pestryakova ◽  
Peter G. Appleby ◽  
...  

AbstractIndustrialization in the Northern Hemisphere has led to warming and pollution of natural ecosystems. We used paleolimnological methods to explore whether recent climate change and/or pollution had affected a very remote lake ecosystem, i.e. one without nearby direct human influence. We compared sediment samples that date from before and after the onset of industrialization in the mid-nineteenth century, from four short cores taken at water depths between 12.1 and 68.3 m in Lake Bolshoe Toko, eastern Siberia. We analyzed diatom assemblage changes, including diversity estimates, in all four cores and geochemical changes (mercury, nitrogen, organic carbon) from one core taken at an intermediate water depth. Chronologies for two cores were established using 210Pb and 137Cs. Sedimentation rates were 0.018 and 0.033 cm year−1 at the shallow- and deep-water sites, respectively. We discovered an increase in light planktonic diatoms (Cyclotella) and a decrease in heavily silicified euplanktonic Aulacoseira through time at deep-water sites, related to more recent warmer air temperatures and shorter periods of lake-ice cover, which led to pronounced thermal stratification. Diatom beta diversity in shallow-water communities changed significantly because of the development of new habitats associated with macrophyte growth. Mercury concentrations increased by a factor of 1.6 since the mid-nineteenth century as a result of atmospheric fallout. Recent increases in the chrysophyte Mallomonas in all cores suggested an acidification trend. We conclude that even remote boreal lakes are susceptible to the effects of climate change and human-induced pollution.


Author(s):  
Nimazhap Badmaev ◽  
Aleksandr Bazarov ◽  
Anatoly Kulikov ◽  
Ayur Gyninova ◽  
Darima Sympilova ◽  
...  

2011 ◽  
Vol 52 (58) ◽  
pp. 185-192 ◽  
Author(s):  
Shuhei Takahashi ◽  
Konosuke Sugiura ◽  
Takao Kameda ◽  
Hiroyuki Enomoto ◽  
Yury Kononov ◽  
...  

AbstarctFollowing an International Geophysical Year project, we conducted meteorological observations during 2004–07 around the Suntar–Khayata range in eastern Siberia, where a strong temperature inversion exists throughout the winter. The temperature on the flat plain around Oymyakon (~700ma.s.l.) was ~20°C lower than that in a glaciated area located at ~2000ma.s.l. The inversion remained stable from October to April due to the Siberian high. Snowfall was limited to the beginning and end of winter. The stable conditions prevented atmospheric disturbances and inhibited snowfall during midwinter. From 1945 to 2003, glaciers in the Suntar–Khayata range retreated, with an area reduction of 19.3%. To assess this retreat, we estimated the response of the glaciers to climate change. According to US National Centers for Environmental Prediction (NCEP) data, the temperature in this region increased by ~1.9°C over 60 years. By calculating snow accumulation and ablation, the sensitivity of the equilibrium-line altitude (ELA) to the temperature shift was evaluated. We estimated snow precipitation based on precipitation at <0°C and ablation using the degree-day method. By these estimates, the ELA of Glacier No. 31, assumed 2350 m at present, could rise ~150m if temperature rises an average of 1°C. Furthermore, a 1.8°C temperature rise could cause the ELA to rise to 2600ma.s.l., removing the accumulation zone. With no accumulation zone, the glacier body would decrease, roughly halving in volume after ~400 years.


Author(s):  
K. I. Kobak ◽  
I. YE. Turchinovich ◽  
N. YU. Kondrasheva ◽  
E.-D. Schulze ◽  
W. Schulze ◽  
...  

1996 ◽  
Vol 92 (1-2) ◽  
pp. 119-127
Author(s):  
K. I. Kobak ◽  
I. Ye. Turcmnovich ◽  
N. Yu. Kondrasiheva ◽  
E. -D. Schulze ◽  
W. Schulze ◽  
...  

2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


Sign in / Sign up

Export Citation Format

Share Document