Analysis of nonlinear deformation and stability of reinforced elliptic cylindrical shells under bending with internal pressure

2010 ◽  
Vol 53 (2) ◽  
pp. 149-154
Author(s):  
D. V. Boiko ◽  
L. P. Zheleznov ◽  
V. V. Kabanov
1970 ◽  
Vol 92 (4) ◽  
pp. 767-773 ◽  
Author(s):  
Jaroslaw Sobieszczanski

Single and multiple mitred bends are analyzed for stress and deformation due to inplane bending and internal pressure. Theory of cylindrical shells is used as a tool of analysis. Results show maximum stress at the elbow increased up to more than 400 percent of the stress predicted by elementary beam theory. Influence of the elbow on the self-compensation of the heated pipeline is discussed and the local reinforcements proposed. Solutions are presented as graphs which may be directly applied in design work.


Author(s):  
J.L. Urrutia-Galicia ◽  
A.N. Sherbourne

The mathematical model of the stability analysis of circular cylindrical shells under arbitrary internal pressure is presented. The paper consists of a direct analysis of the equilibrium modes in the neighbourhood of the unperturbed principal equilibrium path. The final stability condition results in a completely symmetric differential operator which is then compared with current theories found in the literature.


Sign in / Sign up

Export Citation Format

Share Document