scholarly journals Using Leap Motion Technology in the Development of a Touchless Screen Electronic Dissector Guide in the Anatomy Dissection Laboratory

2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Mei Kuen Florence Tang
Keyword(s):  
2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Iftitah Aulia Ahsani ◽  
Diana Rahmawati ◽  
Kunto Aji Wibisono

Robot transporter adalah robot yang digunakan untuk mengambil atau memindahkan barang yang dapat di kendalikan secara otomatis atau manual. Tetapi kendali robot transporter secara manual yang sudah dikembangkan saat ini hanya dapat dikendalikan dengan cara memberikan perintah menggunakan remote control konvensional. Maka pada penelitian ini dikembangkan robot transporter yang dikendalikan menggunakan sensor leap motion berdasarkan pembacaan posisi pergelangan tangan manusia (gesture tangan) dengan gerakan kombinasi yang sudah diatur sebelumnya. Robot transporter tersebut dapat dikendalikan dengan enam perintah, yaitu gerakan maju, mundur, kanan, kiri, serta mengambil dan meletakkan benda. Teknik pengendalian robot transporter menggunakan metode Decision Tree yang diolah dari pembacaan sensor leap motion, yang berfungsi untuk meminimalisirkan proses pemilihan keputusan yang kompleks menjadi lebih simple, sehingga pengambilan keputusan tersebut lebih menginterpretasikan solusi dari masalah yang ada. Setelah dilakukan pengujian, robot transporter dapat dikendalikan menggunakan gestur tangan dengan tingkat keberhasilan sebesar 91,42%. Hal ini dikarena ada beberapa kondisi ketika sensor tidak tepat dalam membaca beberapa parameter yang digunakan. Hal ini berpengaruh saat pengambilan keputusan menggunakan decision tree sehingga hasil keputusan kurang tepat.


Author(s):  
Giuseppe Placidi ◽  
Danilo Avola ◽  
Luigi Cinque ◽  
Matteo Polsinelli ◽  
Eleni Theodoridou ◽  
...  

AbstractVirtual Glove (VG) is a low-cost computer vision system that utilizes two orthogonal LEAP motion sensors to provide detailed 4D hand tracking in real–time. VG can find many applications in the field of human-system interaction, such as remote control of machines or tele-rehabilitation. An innovative and efficient data-integration strategy, based on the velocity calculation, for selecting data from one of the LEAPs at each time, is proposed for VG. The position of each joint of the hand model, when obscured to a LEAP, is guessed and tends to flicker. Since VG uses two LEAP sensors, two spatial representations are available each moment for each joint: the method consists of the selection of the one with the lower velocity at each time instant. Choosing the smoother trajectory leads to VG stabilization and precision optimization, reduces occlusions (parts of the hand or handling objects obscuring other hand parts) and/or, when both sensors are seeing the same joint, reduces the number of outliers produced by hardware instabilities. The strategy is experimentally evaluated, in terms of reduction of outliers with respect to a previously used data selection strategy on VG, and results are reported and discussed. In the future, an objective test set has to be imagined, designed, and realized, also with the help of an external precise positioning equipment, to allow also quantitative and objective evaluation of the gain in precision and, maybe, of the intrinsic limitations of the proposed strategy. Moreover, advanced Artificial Intelligence-based (AI-based) real-time data integration strategies, specific for VG, will be designed and tested on the resulting dataset.


Author(s):  
Partha Pratim Roy ◽  
Pradeep Kumar ◽  
Shweta Patidar ◽  
Rajkumar Saini

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2065
Author(s):  
Irene Cortés-Pérez ◽  
Noelia Zagalaz-Anula ◽  
Desirée Montoro-Cárdenas ◽  
Rafael Lomas-Vega ◽  
Esteban Obrero-Gaitán ◽  
...  

Leap Motion Controller (LMC) is a virtual reality device that can be used in the rehabilitation of central nervous system disease (CNSD) motor impairments. This review aimed to evaluate the effect of video game-based therapy with LMC on the recovery of upper extremity (UE) motor function in patients with CNSD. A systematic review with meta-analysis was performed in PubMed Medline, Web of Science, Scopus, CINAHL, and PEDro. We included five randomized controlled trials (RCTs) of patients with CNSD in which LMC was used as experimental therapy compared to conventional therapy (CT) to restore UE motor function. Pooled effects were estimated with Cohen’s standardized mean difference (SMD) and its 95% confidence interval (95% CI). At first, in patients with stroke, LMC showed low-quality evidence of a large effect on UE mobility (SMD = 0.96; 95% CI = 0.47, 1.45). In combination with CT, LMC showed very low-quality evidence of a large effect on UE mobility (SMD = 1.34; 95% CI = 0.49, 2.19) and the UE mobility-oriented task (SMD = 1.26; 95% CI = 0.42, 2.10). Second, in patients with non-acute CNSD (cerebral palsy, multiple sclerosis, and Parkinson’s disease), LMC showed low-quality evidence of a medium effect on grip strength (GS) (SMD = 0.47; 95% CI = 0.03, 0.90) and on gross motor dexterity (GMD) (SMD = 0.73; 95% CI = 0.28, 1.17) in the most affected UE. In combination with CT, LMC showed very low-quality evidence of a high effect in the most affected UE on GMD (SMD = 0.80; 95% CI = 0.06, 1.15) and fine motor dexterity (FMD) (SMD = 0.82; 95% CI = 0.07, 1.57). In stroke, LMC improved UE mobility and UE mobility-oriented tasks, and in non-acute CNSD, LMC improved the GS and GMD of the most affected UE and FMD when it was used with CT.


Sign in / Sign up

Export Citation Format

Share Document