virtual rehabilitation
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 60)

H-INDEX

18
(FIVE YEARS 5)

Author(s):  
Liu Wang ◽  
Mengjie Huang ◽  
Rui Yang ◽  
Hai-Ning Liang ◽  
Ji Han ◽  
...  

Author(s):  
Peter H. Wilson ◽  
Jeffrey M. Rogers ◽  
Karin Vogel ◽  
Bert Steenbergen ◽  
Thomas B. McGuckian ◽  
...  

Abstract Background Home-based rehabilitation of arm function is a significant gap in service provision for adult stroke. The EDNA-22 tablet is a portable virtual rehabilitation-based system that provides a viable option for home-based rehabilitation using a suite of tailored movement tasks, and performance monitoring via cloud computing data storage. The study reported here aimed to compare use of the EDNA system with an active control (Graded Repetitive Arm Supplementary Program—GRASP training) group using a parallel RCT design. Methods Of 19 originally randomized, 17 acute-care patients with upper-extremity dysfunction following unilateral stroke completed training in either the treatment (n = 10) or active control groups (n = 7), each receiving 8-weeks of in-home training involving 30-min sessions scheduled 3–4 times weekly. Performance was assessed across motor, cognitive and functional behaviour in the home. Primary motor measures, collected by a blinded assessor, were the Box and Blocks Task (BBT) and 9-Hole Pegboard Test (9HPT), and for cognition the Montreal Cognitive Assessment (MoCA). Functional behaviour was assessed using the Stroke Impact Scale (SIS) and Neurobehavioural Functioning Inventory (NFI). Results One participant from each group withdrew for personal reasons. No adverse events were reported. Results showed a significant and large improvement in performance on the BBT for the more-affected hand in the EDNA training group, only (g = 0.90). There was a mild-to-moderate effect of training on the 9HPT for EDNA (g = 0.55) and control (g = 0.42) groups, again for the more affected hand. In relation to cognition, performance on the MoCA improved for the EDNA group (g = 0.70). Finally, the EDNA group showed moderate (but non-significant) improvement in functional behaviour on the SIS (g = 0.57) and NFI (g = 0.49). Conclusion A short course of home-based training using the EDNA-22 system can yield significant gains in motor and cognitive performance, over and above an active control training that also targets upper-limb function. Intriguingly, these changes in performance were corroborated only tentatively in the reports of caregivers. We suggest that future research consider how the implementation of home-based rehabilitation technology can be optimized. We contend that self-administered digitally-enhanced training needs to become part of the health literacy of all stakeholders who are impacted by stroke and other acquired brain injuries. Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR) Number: ACTRN12619001557123. Registered 12 November 2019, http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=378298&isReview=true


2021 ◽  
Author(s):  
Liu Wang ◽  
Mengjie Huang ◽  
Yiqi Wang ◽  
Rui Yang ◽  
Kai-Lun Liao ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 190-197
Author(s):  
Marcelo Silva de Carvalho ◽  
Leonardo Cesar Carvalho ◽  
Ricardo da Silva Alves ◽  
Flavia da Silva Menezes ◽  
Elenara da Costa Gomes ◽  
...  

2021 ◽  
Author(s):  
Zhiqiang Luo ◽  
Audrey Ei-Ping Lim ◽  
Ponraj Durairaj ◽  
Kim Kiow Tan ◽  
Verawaty Verawaty

Abstract Background: Compensatory movements are commonly observed in older adults with stroke when they take motor practice for rehabilitation, which could limit their motor recovery.Aim: This study aims to develop one virtual rehabilitation system (VRS) that can detect and reduce compensatory movements to improve the quality of upper extremity (UE) movements and hence the outcome of rehabilitation in community-dwelling older adults with stroke. Method: To design and validate the algorithm of compensation detection equipped in VRS, a study was first conducted to recruit 17 healthy and 6 stroke participants to identify and quantify compensatory movements when they played rehabilitation games provided by the VRS. Then a pilot study was conducted to test the feasibility and efficacy of the VRS deployed in community, where 18 stroke participants were assigned to either virtual reality (VR) group or conventional treatment (CT) group, and each participant underwent 10 sessions of an additional 6 minutes of VR games or CT respectively, on top of their usual rehabilitation programme. Participants were assessed before and after interventions using Fugl-Meyer Assessment-Upper Extremity (FMA-UE), Wolf Motor Function Test(WMFT), Stroke Rehabilitation Motivation Scale (SRMS), Range of Motion (ROM) measurements and the number of compensatory movements.Results: VR group demonstrated a trend in reduction of trunk and upper-extremity compensations, increased intrinsic motivation scores, and statistically significant improvements in FMA-UE (p=0.045) and WMFT (p=0.009, p=0.0355) scores. There was, however, no significant difference in all outcome measures between two groups. Conclusion: The compensation-aware VRS demonstrates a trend towards reduced compensation and higher motivation level, which could be an effective adjunct to the conventional therapy with less supervision from a therapist as well as be potentially deployed in a community center or at an elder adult’s home.


2021 ◽  
Vol 2 ◽  
Author(s):  
Emil Rosenlund Høeg ◽  
Tina Myung Povlsen ◽  
Jon Ram Bruun-Pedersen ◽  
Belinda Lange ◽  
Niels Christian Nilsson ◽  
...  

Background: As the elderly population continues to grow, so does the demand for new and innovative solutions to tackle age-related chronic diseases and disabilities. Virtual Reality (VR) has been explored as a novel therapeutic tool for numerous health-related applications. Although findings frequently favors VR, methodological shortcomings prevent clinical recommendations. Moreover, the term “VR” is frequently used ambiguously to describe e.g., video games; the distinction remains vague between immersive VR (IVR) systems and non-immersive VR (NVR). With no distinct demarcation, results of outcome measures are often pooled in meta-analyses, without accounting for the immersiveness of the system.Objective: This systematic review focused on virtual reality-based rehabilitation of older adults (+60) in motor rehabilitation programs. The review aims to retrospectively classify previous studies according to the level of immersion, in order to get an overview of the ambiguity-phenomenon, and to utilize meta-analyses and subgroup analyses to evaluate the comparative efficacy of system immersion in VR-based rehabilitation.Methods: Following PRISMA guidelines, we conducted a systematic search for randomized controlled trials, describing virtual rehabilitation or video games interventions for older adults (+60). Main outcomes were pain, motivation, mobility, balance, and adverse events.Results: We identified 15 studies which included 743 patients. Only three studies utilized IVR. The rest used various NVR-equipment ranging from commercial products (e.g., Nintendo Wii), to bespoke systems that combine tracking devices, software, and displays. A random effects meta-analysis of 10 studies analyzed outcome measures of mobility, balance, and pain. Protocols and dosage varied widely, but outcome results were in favor of immersive and non-immersive interventions, however, dropout rates and adverse events were mostly in favor of the control.Conclusions: We initialize a call-for-action, to distinguish between types of VR-technology and propose a taxonomy of virtual rehabilitation systems based on our findings. Most interventions use NVR-systems, which have demonstrably lower cybersickness-symptoms than IVR-systems. Therefore, adverse events may be under-reported in RCT-studies. An increased demand for IVR-systems highlight this challenge. Care should be given, when applying the results of existing NVR tools to new IVR-technologies. Future studies should provide more detail about their interventions, and future reviews should differentiate between NVR and IVR.


Sign in / Sign up

Export Citation Format

Share Document