Effect of temporary cements on the microtensile bond strength of self-etching and self-adhesive resin cement

2014 ◽  
Vol 72 (8) ◽  
pp. 762-769 ◽  
Author(s):  
Edilausson Moreno Carvalho ◽  
Ceci Nunes Carvalho ◽  
Alessandro Dourado Loguercio ◽  
Darlon Martins Lima ◽  
José Bauer
2016 ◽  
Vol 17 (2) ◽  
pp. 149-153 ◽  
Author(s):  
Cristina Parise Gré ◽  
Renan C de Ré Silveira ◽  
Shizuma Shibata ◽  
Carlo TR Lago ◽  
Luiz CC Vieira

ABSTRACT Aim This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. Materials and methods A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm2 and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games–Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40× magnification. Results Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Conclusion Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Clinical significance Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic. How to cite this article Gré CP, de Ré Silveira RC, Shibata S, Lago CTR, Vieira LCC. Effect of Silanization on Microtensile Bond Strength of Different Resin Cements to a Lithium Disilicate Glass Ceramic. J Contemp Dent Pract 2016;17(2):149-153.


2020 ◽  
Vol 45 (4) ◽  
pp. E185-E195
Author(s):  
RV Machry ◽  
PE Fontana ◽  
TC Bohrer ◽  
LF Valandro ◽  
OB Kaizer

Clinical Relevance When luting relined fiber posts with self-adhesive cement, the surface treatment of the posts influences the adhesion of the fiber posts to root dentin. SUMMARY This study evaluated the effect of surface treatment and silanization of resin composite on the bond strength of relined fiber posts cemented with self-adhesive resin cement. Push-out and microtensile bond strength (MTBS) tests were performed in this study. The endodontic treatment of 80 single-rooted bovine teeth was first performed in the push- out test segment, followed by weakening the intracanal walls by diamond bur. Then, the glass fiber posts were adapted with resin composite to fill the root canals, followed by photoactivation and resin surface conditioning according to four different experimental conditions: no conditioning as control, 10% hydrofluoric acid, 35% hydrogen peroxide, or air abrasion with alumina particle (all groups were subdivided into “with silanization” or “without silanization,” thus totaling eight experimental groups). Self-adhesive resin cement was used for the post cementation. Four slices per tooth were obtained for the push-out tests. Next, 160 blocks of resin composite were first produced for the MTBS tests; their bonding surfaces were conditioned (as mentioned, ie, eight treatments), and they were cemented to each other. The 80 sets (n=10/treatment) were then cut into microbars (16/set): eight were immediately tested, while the other eight were thermocycled (12,000×) and stored (120 days) before MTBS. Failure modes and topographic analyses were performed after treatments. There was no statistically significant difference for the push-out results. In MTBS, surface treatment and silanization had a significant effect (p<0.001). Aging decreased bond strength for all groups. Considering the aged groups, air abrasion promoted the highest values and silanization improved bond strength for all treatments except air abrasion. The alumina particle air abrasion of the relining resin composite promoted the highest bond strengths when luting with self-adhesive resin cement.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2353
Author(s):  
Bit-Na Kim ◽  
Sung-Ae Son ◽  
Jeong-Kil Park

The aim of this study was to investigate the effect of G-CEM One Primer (GCOP) and self-etching adhesive on the microtensile bond strength (µTBS) between self-adhesive resin cement G-CEM One (GCO) and dentin. Teeth were sectioned to expose the flat dentin surface and randomly assigned into five groups (n = 15) according to the dentin surface treatment: 1) no surface treatment, 2) GCOP, 3) All-Bond Universal (ABU), 4) GCOP followed by ABU (GCOP/ABU), 5) ABU followed by GCOP (ABU/GCOP). The composite resin blocks were bonded to the dentin surface using GCO. The specimens were stored in distilled water at 37 °C for 24 h, then sectioned into sticks (1 mm × 10 mm). The μTBS values were statistically analyzed using 1-way analysis of variance (ANOVA) and Tukey’s honestly significant difference (HSD) test (α = 0.05) and failure mode was examined under a stereomicroscope. The bonding interface of each specimen was evaluated using confocal laser scanning microscopy. The GCOP group exhibited the highest µTBS value and there were no significant differences observed between GCOP, GCOP/ABU, ABU/GCOP groups (p > 0.05). The use of GCOP with GCO results in the improved µTBS between GCO and dentin. In conclusion, using only GCOP with GCO for bonding of indirect restoration is extremely simple and increasing bond strength.


2013 ◽  
Vol 1 (1) ◽  
pp. 3
Author(s):  
Mohammed Al-Saleh ◽  
Omar El-Mowafy

PURPOSE: To determine the microtensile bond strength (µTBS) of composite restorations when bonded with self-adhesive resin-cements. METHODS: Thirty caries-free extracted molars were sterilized, and divided into 5 equal groups according to adhesive used: SBMP (Scotch-Bond-Multipurpose, total-etch 3-step adhesive, 3M/ESPE), PAN (PanaviaF-2.0, resin-cement with self-etch primer, Kuraray), RXU (RelyX-Unicem, self-adhesive resin-cement, 3M/ESPE), BRZ (Breeze, self-adhesive resin-cement, Pentron) and MON (Monocem, self-adhesive resin-cement, Shofu). Each group was divided into 2 subgroups (dentin or enamel). Bonding agents, used according to manufacturers’ directions, or a thin layer of resin cement was applied onto teeth flat surfaces. Six mm-thick Filtek-Z250 (3M/ESPE) composite build up was made in three increments. Teeth were sectioned to obtain rectangular specimens which were subjected to tensile force until failure. Specimens were subjected to 1,000 thermo-cycles between 5oC-55°C. Means and standard deviation (SD) were calculated and statistically-analyzed with ANOVA and Tukey’s t-test. Specimens’ failure modes were reported. RESULTS: SBMP showed the highest µTBS results with enamel (24.6(6.1) MPa), PAN showed high µTBS with enamel (12.1(3.9)MPa) and dentin (11.6(4.7)MPa) compared to the other self-adhesive cements. Failure modes were adhesive and mixed for self-adhesive resin-cements. MON subgroups and BRZ enamel subgroup underwent premature failure. CONCLUSION: self-adhesive resin-cements showed low µTBS compared to SBMP.


2016 ◽  
Vol 95 (13) ◽  
pp. 1487-1493 ◽  
Author(s):  
N. Hirose ◽  
R. Kitagawa ◽  
H. Kitagawa ◽  
H. Maezono ◽  
A. Mine ◽  
...  

An experimental cavity disinfectant (ACC) that is intended to be used for various direct and indirect restorations was prepared by adding an antibacterial monomer 12-methacryloyloxydodecylpyridinum bromide (MDPB) at 5% into 80% ethanol. The antibacterial effectiveness of ACC and its influences on the bonding abilities of resin cements were investigated. To examine the antibacterial activity of unpolymerized MDPB, the minimum inhibitory and bactericidal concentrations (MIC and MBC) were determined for Streptococcus mutans, Lactobacillus casei, Actinomyces naeslundii, Parvimonas micra, Enterococcus faecalis, Fusobacterium nucleatum, and Porphyromonas gingivalis. Antibacterial activities of ACC and the commercial cavity disinfectant containing 2% chlorhexidine and ethanol (CPS) were evaluated by agar disk diffusion tests through 7 bacterial species and by MIC and MBC measurement for S. mutans. The effects of ACC and CPS to kill bacteria in dentinal tubules were compared with an S. mutans–infected dentin model. Shear bond strength tests were used to examine the influences of ACC on the dentin-bonding abilities of a self-adhesive resin cement and a dual-cure resin cement used with a primer. Unpolymerized MDPB showed strong antibacterial activity against 7 oral bacteria. ACC produced inhibition zones against all bacterial species similar to CPS. For ACC and CPS, the MIC value for S. mutans was identical, and the MBC was similar with only a 1-step dilution difference (1:2). Treatment of infected dentin with ACC resulted in significantly greater bactericidal effects than CPS ( P < 0.05, analysis of variance and Tukey’s honest significant difference test). ACC showed no negative influences on the bonding abilities to dentin for both resin cements, while CPS reduced the bond strength of the self-adhesive resin cement ( P < 0.05). This study clarified that the experimental cavity disinfectant containing 5% MDPB is more effective in vitro than the commercially available chlorhexidine solution to eradicate bacteria in dentin, without causing any adverse influences on the bonding abilities of resinous luting cements.


2016 ◽  
Vol 42 (12) ◽  
pp. 1819-1821 ◽  
Author(s):  
Stephanie Lemos Martins Sicuro ◽  
Marilisa Carneiro Leão Gabardo ◽  
Carla Castiglia Gonzaga ◽  
Nathaly Dias Morais ◽  
Flares Baratto-Filho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document