The Stability of Glucose-6-Phosphate Dehydrogenase and 6-Phospho-Gluconate Dehydrogenase in Human Erythrocytes and Hemolysates During Storage

1964 ◽  
Vol 16 (2) ◽  
pp. 177-184 ◽  
Author(s):  
O. J. Mellbye ◽  
D. Scott
Blood ◽  
1973 ◽  
Vol 42 (4) ◽  
pp. 637-648 ◽  
Author(s):  
Elizabeth M. Warrendorf ◽  
David Rubinstein

Abstract It has previously been possible to double the level of ATP in human erythrocytes by incubation of the cells at 37° for 10 hr with glucose and adenine. The present study describes a further increase in the ATP level and some of the possible mechanisms involved. Addition of 5 mM pyruvate to a medium containing 32 mM inorganic phosphate, glucose, and adenine elevated the level of ATP threefold during a 10-hr incubation. Pyruvate could be replaced by inosine but the presence of both limited the elevation of ATP to twice that of fresh cells. This limitation may be overcome by the use of 96 mM phosphate in the incubation medium, in which case the intracellular level of ATP is tripled within 2 hr. The conditions which limit the accumulation of ATP are associated with low intracellular phosphate concentrations and the accumulation of organic phosphates, especially, in the presence of inosine, 2,3-diphosphoglycerate. Utilizing 14C-glucose labeled in carbons 1, 2, or 6, it has been shown that when ATP is being rapidly elevated, the pentose moiety of the adenine nucleotides is mainly supplied (about 80%) by oxidation of carbon 1 of glucose, catalyzed by the dehydrogenases of the hexosemonophosphate shunt. In the presence of pyruvate this activity is doubled. Pyruvate reoxidizes NADPH formed by this pathway, since lactic dehydrogenase has some specificity towards the NADPH. The involvement of the dehydrogenases of the hexosemonophosphate shunt is illustrated by the use of erythrocytes deficient in glucose-6-phosphate dehydrogenase. Incubation of these cells for 5 hr with glucose and adenine results in only a slight increase in ATP formation, and pyruvate has no additional effect. Addition of inosine, however, leads to the same increment in ATP levels seen in normal cells. The ATP and 2,3-diphosphoglycerate levels in 6-wk preserved blood can also be increased to three times that of fresh cells by incubation with glucose, adenine, pyruvate, and inosine in a medium high in inorganic phosphate.


Author(s):  
J. H. Wilkinson ◽  
Jean M. Robinson ◽  
K. P. Johnson

The efflux of lactate dehydrogenase and haemoglobin from human erythrocytes during prolonged incubation at 37° was significantly reduced by ATP, ADP, AMP, UTP, creatine phosphate, or phosphoenolpyruvate and to a lesser extent by fructose, glucose 6-phosphate or fructose 6-phosphate, but not by glucose. Iodoacetate, however, markedly increased the loss of haemoglobin and slightly increased that of lactate dehydrogenase. Phospholipase C greatly accelerated the relase of haemoglobin, lactate dehydrogenase, pyruvate kinase, hexokinase, glucose 6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase from human erythrocytes, but this effect was also reduced in the presence of ATP or ADP. The loss of lactate dehydrogenase, malate dehydrogenase, and pyruvate kinase from the cells treated with phospholipase C increased as their ATP content fell. In a series of experiments in which the action of phospholipase C was stopped by the subsequent addition of trypsin, ATP and ADP (1 mmol/l) significantly reduced the efflux of haemoglobin, but AMP had no such effect. The results are consistent with the conclusion from our previous work that enzyme leakage is related to diminution in the energy content of the cells. The protective action of AMP on cells not treated with phospholipase C, however, differs from earlier findings with rat lymphocytes and it is suggested that in red cells it might be converted into ATP or that it has a direct effect on the permeability of the cell membrane.


1955 ◽  
Vol 33 (3) ◽  
pp. 404-407 ◽  
Author(s):  
H. Bruce Collier ◽  
Sheila C. McRae

Glutathione reductase activity of hemolyzates of human erythrocytes was measured by an amperometric titration of the reduced glutathione that is formed from oxidized glutathione. The electron donor in the system was reduced triphosphopyridine nucleotide, produced by the glucose-6-phosphate dehydrogenase of the cells. Removal of the red-cell stromata from hemolyzates slightly increased the reductase activity. Addition of Na+, K+, or Ca++ had no effect on the enzyme. No marked inhibition was observed in the presence of phenothiazine, phenothiazone, phenylhydrazine, or p-chloromercuribenzoate.


1978 ◽  
Vol 34 (1) ◽  
pp. 91-101
Author(s):  
E. Ziparo ◽  
A. Lemay ◽  
V.T. Marchesi

Spectrin molecules are distributed uniformly throughout the submembranous regions of intact human erythrocytes. Spectrin does not appear to extend into the red blood cell cytoplasm to any significant extent. Thus, it does not form a recognizable internal scaffolding nor does it seem to connect distant segments of the cell membrane. Spectrin retains its submembranous location in the spiny processes of echinocytes produced by ATP depletion. Thus, these processes do not seem to form by a simple extrusion mechanism powered by contraction of the spectrin network. Spectrin seems to be important for the stability of the lipid bilayer of the red cell membrane, and it probably also plays a role in regulating red cell shape. How it performs either function is still unknown.


PEDIATRICS ◽  
1958 ◽  
Vol 22 (3) ◽  
pp. 453-460
Author(s):  
Ruth T. Gross ◽  
Ruth E. Hurwitz

Metabolism in erythrocytes was studied in a group of premature and full-term, newborn, healthy infants by assay of the following enzymes: glucose-6-phosphate dehydrogenase, 6-phosphogluconic dehydrogenase and aldolase. Concentrations of fetal hemoglobin and stability of GSH were also determined. The studies indicate increased metabolic activity in the erythrocytes of young subjects. The pentose phosphate pathway appears to be very active at birth with gradual decline, to values found for adult subjects, in the second 6 months of life. GSH is unstable in newborns less than 3 days of age despite high levels of activity of G6PD in the same subjects.


Sign in / Sign up

Export Citation Format

Share Document