A method for the determination of the total number of3H-ouabain binding sites in biopsies of human skeletal muscle

1984 ◽  
Vol 44 (6) ◽  
pp. 509-518 ◽  
Author(s):  
Aage Nørgaard ◽  
Keld Kjeldsen ◽  
Torben Clausen
1990 ◽  
Vol 38 (4) ◽  
pp. 397-399 ◽  
Author(s):  
A. N�rgaard ◽  
J. H. Jensen ◽  
F. Andreasen

1998 ◽  
Vol 260 (2) ◽  
pp. 218-222 ◽  
Author(s):  
M.Stig Djurhuus ◽  
Niels A.H. Klitgaard ◽  
Claus Tveskov ◽  
Klavs Madsen ◽  
Bernadette Guldager ◽  
...  

1998 ◽  
Vol 275 (6) ◽  
pp. E1092-E1099 ◽  
Author(s):  
D. L. Hasten ◽  
G. S. Morris ◽  
S. Ramanadham ◽  
K. E. Yarasheski

Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), we have developed a simple method to isolate myosin heavy chain (MHC) and actin from small (60–80 mg) human skeletal muscle samples for the determination of their fractional synthesis rates. The amounts of MHC and actin isolated are adequate for the quantification of [13C]leucine abundance by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Fractional synthesis rates of mixed muscle protein (MMP), MHC, and actin were determined in six healthy young subjects (27 ± 1 yr) after they received a 14-h intravenous infusion (prime = 7.58 μmol/kg body wt, constant infusion = 7.58 μmol ⋅ kg body wt−1 ⋅ h−1) of [1-13C]leucine. The fractional synthesis rates of MMP, MHC, and actin were found to be 0.0468 ± 0.0048, 0.0376 ± 0.0033, and 0.0754 ± 0.0078%/h, respectively. Overall, the synthesis rate of MHC was 20% lower ( P = 0.012), and the synthesis rate of actin was 61% higher ( P = 0.060, not significant) than the MMP synthesis rate. The isolation of these proteins for isotope abundance analysis by GC-C-IRMS provides important information about the synthesis rates of these specific contractile proteins, as opposed to the more general information provided by the determination of MMP synthesis rates.


1995 ◽  
Vol 28 (10) ◽  
pp. 1145-1154 ◽  
Author(s):  
Stephen F. Levinson ◽  
Masahiko Shinagawa ◽  
Takuso Sato

1997 ◽  
Vol 152 (1) ◽  
pp. 49-57 ◽  
Author(s):  
I Dørup ◽  
T Clausen

Abstract Since adrenal steroids have been shown to upregulate the concentration of Na+–K+-ATPase in cardiac muscle, similar effects could be expected in skeletal muscle. Following infusion of dexamethasone (0·02–0·1 mg/kg per day) for 7 days in 10-week-old rats, the total concentration of [3H]ouabain-binding sites rose by up to 22–42% in soleus, extensor digitorum longus, gastrocnemius and diaphragm muscle. Dexamethasone produced no or minute changes in the Na+–K+ contents of skeletal muscle. In contrast, infusion with aldosterone (0·02–0·5 mg/kg per day) for 7 days produced hypokalemia and a graded reduction in the K+ content of skeletal muscle, which was closely correlated to a downregulation of the [3 H]ouabain-binding site concentration (r= 0·65–0·70; P<0·001). The results indicate that in skeletal muscle high doses of glucocorticoids upregulate the concentration of Na+–K+ pumps whereas mineralocorticoids induce a downregulation, which is secondary to the concomitant K+ deficiency. Since adrenalectomy produced no significant change in [3 H]ouabain-binding site concentration, basal levels of endogenous adrenal steroids seem to be of minor importance for the regulation of Na+–K+ pump concentration in skeletal muscle. Journal of Endocrinology (1997) 152, 49–57


1986 ◽  
Vol 56 (3) ◽  
pp. 519-532 ◽  
Author(s):  
Keld Kjeldsen ◽  
Maria Elisabeth Everts ◽  
Torben Clausen

1. Using vanadate-facilitated [3H]ouabain binding, the effect of semi-starvation on the total concentration of [3H]ouabain-binding sites was determined in samples of rat skeletal muscle. When 12-week-old rats were semi-starved for 1, 2 or 3 weeks on one-third to half the normal daily energy intake, the [3H]ouabain-binding site concentration in soleus muscle was reduced by 19, 24 and 25% respectively. In extensor digitorum longus, diaphragm and gastrocnemius muscles the decrease after 2 weeks of semi-starvation was 15, 18 and 17% respectively. The decrease was fully reversible within 3 d of free access to the diet. Complete deprivation of food for 5 d caused a reduction of 25% in soleus muscle [3H]ouabain-binding-siteconcentration. It was excluded that the reduction in [3H]ouabain binding was due to a reduced affinity of the binding site for [3H]ouabain.2. Semi-starvation of 12-week-old rats for 3 weeks caused a reduction of 45 and 53% in 3, 5, 3'-triiodothyronine (T3) and thyroxine (T4) levels respectively. As reduced thyroid hormone levels have previously been found to decrease [3H]ouabain-binding-siteconcentration in skeletal muscle, this points to the importance of T3 and T4 in the down-regulation of the [3H]ouabain-binding-siteconcentration in skeletal muscle with semi-starvation. Whereas potassium depletion caused a decrease in K content as well as in [3H]ouabain-binding-siteconcentration in skeletal muscles, semi-starvation caused only a tendency to a decrease in K content. Thus, K depletion is not a major cause of the reduction in [3H]ouabain-binding-siteconcentration with semi-starvation.3. Due to its high concentration of Na, K pumps, skeletal muscle has a considerable capacity for clearing K from the plasma as well as for the binding of digitalis glycosides. Semi-starvation causes a severe reduction in the total skeletal muscle pool of Na, K pumps and may therefore be associated with impairment of K tolerance and increased digitalis toxicity.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tanner Stokes ◽  
Thomas R. Tripp ◽  
Kevin Murphy ◽  
Robert W. Morton ◽  
Sara Y. Oikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document