Effects of adrenal steroids on the concentration of Na+–K+ pumps in rat skeletal muscle

1997 ◽  
Vol 152 (1) ◽  
pp. 49-57 ◽  
Author(s):  
I Dørup ◽  
T Clausen

Abstract Since adrenal steroids have been shown to upregulate the concentration of Na+–K+-ATPase in cardiac muscle, similar effects could be expected in skeletal muscle. Following infusion of dexamethasone (0·02–0·1 mg/kg per day) for 7 days in 10-week-old rats, the total concentration of [3H]ouabain-binding sites rose by up to 22–42% in soleus, extensor digitorum longus, gastrocnemius and diaphragm muscle. Dexamethasone produced no or minute changes in the Na+–K+ contents of skeletal muscle. In contrast, infusion with aldosterone (0·02–0·5 mg/kg per day) for 7 days produced hypokalemia and a graded reduction in the K+ content of skeletal muscle, which was closely correlated to a downregulation of the [3 H]ouabain-binding site concentration (r= 0·65–0·70; P<0·001). The results indicate that in skeletal muscle high doses of glucocorticoids upregulate the concentration of Na+–K+ pumps whereas mineralocorticoids induce a downregulation, which is secondary to the concomitant K+ deficiency. Since adrenalectomy produced no significant change in [3 H]ouabain-binding site concentration, basal levels of endogenous adrenal steroids seem to be of minor importance for the regulation of Na+–K+ pump concentration in skeletal muscle. Journal of Endocrinology (1997) 152, 49–57

1986 ◽  
Vol 56 (3) ◽  
pp. 519-532 ◽  
Author(s):  
Keld Kjeldsen ◽  
Maria Elisabeth Everts ◽  
Torben Clausen

1. Using vanadate-facilitated [3H]ouabain binding, the effect of semi-starvation on the total concentration of [3H]ouabain-binding sites was determined in samples of rat skeletal muscle. When 12-week-old rats were semi-starved for 1, 2 or 3 weeks on one-third to half the normal daily energy intake, the [3H]ouabain-binding site concentration in soleus muscle was reduced by 19, 24 and 25% respectively. In extensor digitorum longus, diaphragm and gastrocnemius muscles the decrease after 2 weeks of semi-starvation was 15, 18 and 17% respectively. The decrease was fully reversible within 3 d of free access to the diet. Complete deprivation of food for 5 d caused a reduction of 25% in soleus muscle [3H]ouabain-binding-siteconcentration. It was excluded that the reduction in [3H]ouabain binding was due to a reduced affinity of the binding site for [3H]ouabain.2. Semi-starvation of 12-week-old rats for 3 weeks caused a reduction of 45 and 53% in 3, 5, 3'-triiodothyronine (T3) and thyroxine (T4) levels respectively. As reduced thyroid hormone levels have previously been found to decrease [3H]ouabain-binding-siteconcentration in skeletal muscle, this points to the importance of T3 and T4 in the down-regulation of the [3H]ouabain-binding-siteconcentration in skeletal muscle with semi-starvation. Whereas potassium depletion caused a decrease in K content as well as in [3H]ouabain-binding-siteconcentration in skeletal muscles, semi-starvation caused only a tendency to a decrease in K content. Thus, K depletion is not a major cause of the reduction in [3H]ouabain-binding-siteconcentration with semi-starvation.3. Due to its high concentration of Na, K pumps, skeletal muscle has a considerable capacity for clearing K from the plasma as well as for the binding of digitalis glycosides. Semi-starvation causes a severe reduction in the total skeletal muscle pool of Na, K pumps and may therefore be associated with impairment of K tolerance and increased digitalis toxicity.


1988 ◽  
Vol 249 (2) ◽  
pp. 481-485 ◽  
Author(s):  
K Kjeldsen

Homogeneity or heterogeneity of rat soleus-muscle Na,K-ATPase (Na+ + K+-dependent ATPase) with respect to affinity for [3H]ouabain was evaluated. Since the standard method for measuring specific [3H]ouabain binding to rat skeletal-muscle samples includes subtraction of a value for non-specific [3H]ouabain uptake and retention, and a wash-out in the cold to remove [3H]ouabain from the extracellular phase, it was possible that these procedures could hide a class of [3H]ouabain-binding sites either with low affinity or with a rapid dissociation of [3H]ouabain. However, measurements of [3H]ouabain uptake and retention over the range 0.1-5 mM, as well as the omission of wash-out, gave no evidence for heterogeneity of [3H]ouabain-binding sites in rat soleus muscle. Furthermore, the observation of agreement between the uptake and retention of non-specific [3H]ouabain and of [14C]sucrose gave no evidence for the existence of a major pool of [3H]ouabain-binding sites with low affinity for [3H]ouabain. Assuming homogeneity, the total concentration of [3H]ouabain binding sites in soleus-muscle samples from 12-week-old rats is 278-359 pmol/g wet wt.


1986 ◽  
Vol 240 (3) ◽  
pp. 725-730 ◽  
Author(s):  
K Kjeldsen

In the standard [3H]ouabain-binding assay for quantification of the Na,K-ATPase (Na+ + K+-dependent ATPase) concentration in rat skeletal muscles, samples are incubated for 2 × 60 min in 1 microM-[3H]ouabain at 37 degrees C followed by a wash-out for 4 × 30 min at 0 degree C. To obtain accurate determinations, values determined by this standard assay should be corrected for non-specific uptake and retention of [3H]ouabain (11% overestimation), loss of specifically bound [3H]ouabain during wash-out (21% underestimation), evaporation from muscle samples during weighing (4% overestimation), impurity of [3H]ouabain (5% underestimation) and incomplete saturation of [3H]ouabain binding sites (6% underestimation). Thus corrected the standard [3H]ouabain-binding assay determines the total Na,K-ATPase concentration. Hence, in the soleus muscle of 12-week-old rats the total [3H]ouabain-binding-site concentration is 278 +/- 20 pmol/g wet wt. This is at variance with the evaluation of the Na,K-ATPase concentration from Na,K-ATPase activity measurements in muscle membrane fractions, where the recovery of Na,K-ATPase is only 2-18%. Quantification of the total Na,K-ATPase concentration is of particular importance since it is a prerequisite for the discussion of quantitative aspects of the Na,K-ATPase.


1999 ◽  
Vol 87 (3) ◽  
pp. 1132-1140 ◽  
Author(s):  
Xiwu Sun ◽  
Murali Nagarajan ◽  
Philip W. Beesley ◽  
Yuk-Chow Ng

Skeletal muscle expresses multiple isoforms of the Na+-K+-ATPase. Their expression has been shown to be differentially regulated under pathophysiological conditions. In addition, previous studies suggest possible age-dependent alterations in Na+-K+pump function. The present study tests the hypothesis that advancing age is associated with altered Na+-K+-ATPase enzyme activity and isoform-specific changes in expression of the enzyme subunits. Red and white gastrocnemius (Gast) as well as soleus muscles of male Fischer 344/Brown Norway (F-344/BN) rats at 6, 18, and 30 mo of age were examined. Na+-K+-ATPase activity, measured by K+-stimulated 3- O-methylfluorescein phosphatase activity, increased by ∼50% in a mixed Gast homogenate from 30-mo-old compared with 6- and 18-mo-old rats. Advancing age was associated with markedly increased α1- and β1-subunit, and decreased α2- and β2-subunit in red and white Gast. In soleus, there were similar changes in expression of α1- and α2-subunits, but levels of β1-subunit were unchanged. Functional Na+-K+-ATPase units, measured by [3H]ouabain binding, undergo muscle-type specific changes. In red Gast, high-affinity ouabain-binding sites, which are a measure of α2-isozyme, increased in 30-mo-old rats despite decreased levels of α2-subunit. In white Gast, by contrast, decreased levels of α2-subunit were accompanied by decreased high-affinity ouabain-binding sites. Finally, patterns of expression of the four myosin heavy chain (MHC) isoforms (type I, IIA, IIX, and IIB) in these muscles were similar in the three age groups examined. We conclude that, in the skeletal muscles of F-344/BN rats, advancing age is associated with muscle type-specific alterations in Na+-K+-ATPase activity and patterns of expression of α- and β-subunit isoforms. These changes apparently occurred without obvious shift in muscle fiber types, since expression of MHC isoforms remained unchanged. Some of the alterations occurred between middle-age (18 mo) and senescence (30 mo), and, therefore, may be attributed to aging of skeletal muscle.


1993 ◽  
Vol 75 (1) ◽  
pp. 173-180 ◽  
Author(s):  
M. J. McKenna ◽  
T. A. Schmidt ◽  
M. Hargreaves ◽  
L. Cameron ◽  
S. L. Skinner ◽  
...  

This study investigated the effects of sprint training on muscle Na(+)-K(+)-adenosinetriphosphatase (ATPase) concentration, plasma [K+] regulation, muscle performance, and fatigue during severe intermittent exercise. Six untrained male subjects underwent intensive cycle-sprint training for 7 wk. Muscle biopsies were taken at rest from the vastus lateralis muscle before and after 7 wk of training and were assayed for Na(+)-K(+)-ATPase concentration using vanadate-facilitated [3H]ouabain binding to intact samples. Before and after the training period, subjects performed four maximal 30-s exercise bouts (EB) on a cycle ergometer, each separated by a 4-min recovery. Arterialized venous blood samples were drawn immediately before and after each sprint bout and were analyzed for plasma [K+]. The work output was significantly elevated (11%) across all four EBs after training. The muscle [3H]ouabain binding site concentration was significantly increased (16%) from 333 +/- 19 to 387 +/- 15 (SE) pmol/g wet wt after training but was unchanged in muscle obtained from three control subjects. Plasma [K+] rose by 1–2 mmol/l with each EB and declined rapidly by the end of each recovery period. The increases in plasma [K+] resulting from each EB were significantly lower (19%) after training. The ratios of rise in plasma [K+] relative to work output during each EB were also significantly lower (27%) after training. The increased muscle [3H]ouabain binding site concentration and the reduced ratio of rise in [K+] relative to work output with exercise are both consistent with improved plasma and skeletal muscle K+ regulation after sprint training.


1979 ◽  
Vol 237 (3) ◽  
pp. E265
Author(s):  
M H Lin ◽  
J G Vander Tuig ◽  
D R Romsos ◽  
T Akera ◽  
G A Leveille

The possible involvement of Na+,K+-ATPase in the etiology of obesity in the obese (ob/ob) mouse was explored. The number of Na+,K+-ATPase enzyme units in skeletal muscle, liver, and kidneys from 4- and 8-wk-old obese and lean mice was estimated from saturable [3H]ouabain binding to particulate fractions. Neither phenotype nor age altered the Kd value for ouabain binding in these three tissue preparations. The total number of [3H]ouabain binding sites in hindlimb muscles was 35--55% lower in 4- and 8-wk-old obese mice than in their lean counterparts. However, the total number of [3H]ouabain binding sites in liver and kidneys of obese mice was similar to values observed in their lean counterparts. Because it has been suggested that ob/ob mice are hypothyroid, we investigated the response of Na+,K+-ATPase in these mice to thyroid hormone treatment (approximately 5 microgram thyroxine/day for 2 wk). The number of [3H]ouabain binding sites in the three tissues increased in both obese and lean mice injected with this relatively large dose of thyroxine, but the obese mice were 2--3 times more responsive than lean mice.


2017 ◽  
Vol 5 (7) ◽  
pp. e13219 ◽  
Author(s):  
Victoria L. Wyckelsma ◽  
Itamar Levinger ◽  
Robyn M. Murphy ◽  
Aaron C. Petersen ◽  
Ben D. Perry ◽  
...  

1987 ◽  
Vol 245 (3) ◽  
pp. 713-721 ◽  
Author(s):  
J M McWhirter ◽  
G W Gould ◽  
J M East ◽  
A G Lee

We present a model for Ca2+ efflux from vesicles of sarcoplasmic reticulum (SR). It is proposed that efflux is mediated by the Ca2+ + Mg2+-activated ATPase that is responsible for Ca2+ uptake in this system. In the normal ATPase cycle of the ATPase, phosphorylation of the ATPase is followed by a conformational change in which the Ca2+-binding sites change from being outward-facing and of high affinity to being inward-facing and of low affinity. To mediate Ca2+ efflux, it is proposed that the ATPase can adopt a conformation in which the Ca2+-binding sites are of low affinity but still outward-facing. It is shown that experimental data on the rates of Ca2+ efflux can be simulated in terms of this model, with Ca2+-binding-site affinities previously proposed to explain ATPase activity [Gould, East, Froud, McWhirter, Stefanova & Lee (1986) Biochem. J. 237, 217-227]. Effects of Mg2+ and adenine nucleotides on efflux rates are explained. It is suggested that Ca2+ efflux from SR mediated by the ATPase could be important in excitation-contraction coupling in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document