Susceptibility to in vitro lipid peroxidation of low density lipoproteins and erythrocyte membranes from liver cirrhotic patients

1994 ◽  
Vol 54 (2) ◽  
pp. 147-153 ◽  
Author(s):  
M. Taus ◽  
G. Ferretti ◽  
N. Dousset ◽  
J. Moreau ◽  
M. Battino ◽  
...  
2002 ◽  
Vol 80 (7) ◽  
pp. 662-669 ◽  
Author(s):  
Abdelouahed Khalil

Oxidation of low-density lipoproteins constitutes the first step of a very complex process leading to atherosclerosis. Vitamin E, and principally alpha-tocopherol, is considered as the principal inhibitor of lipid peroxidation. Some studies showed the beneficial role of vitamin E in the prevention and reduction of atherosclerosis and its associated pathologies. However, other in vitro studies advance a prooxidant role of vitamin E. The results of the epidemiologic studies are difficult to generalize without taking account of the clinical randomized tests. In this work, we reviewed the principal studies devoted to the role of vitamin E and discussed the assumption of a prooxidant effect of this molecule.Key words: vitamin E, low-density lipoproteins (LDL), lipid peroxidation, cardio-vascular diseases.


1994 ◽  
Vol 179 (6) ◽  
pp. 1903-1911 ◽  
Author(s):  
H Kühn ◽  
J Belkner ◽  
S Zaiss ◽  
T Fährenklemper ◽  
S Wohlfeil

The arachidonate 15-lipoxygenase which is expressed in atherosclerotic lesions is implicated in the oxidative modification of low density lipoproteins during atherogenesis. To obtain experimental in vivo evidence for this hypothesis, we analyzed the structure of oxygenated lipids isolated from the aorta of rabbits fed with a cholesterol-rich diet for different time periods and compared the pattern of oxygenation products with that isolated from low density lipoproteins treated in vitro with the pure rabbit 15-lipoxygenase and with oxygenated lipids isolated from advanced human atherosclerotic lesions. In early atherosclerotic lesions (12-wk cholesterol feeding), specific lipoxygenase products were detected whose structure was similar to those isolated from lipoxygenase-treated low density lipoproteins. The appearance of these products did coincide with the lipid deposition in the vessel wall. In later stages of atherogenesis (26-wk cholesterol feeding) the degree of oxidative modification of the tissue lipids did increase but the share of specific lipoxygenase products was significantly lower, suggesting an increasing overlay of the specific lipoxygenase products by nonenzymatic lipid peroxidation. In advanced human atherosclerotic lesions, large amounts of oxygenation products were detected whose structure suggests a nonenzymatic origin. These data suggest that the arachidonate 15-lipoxygenase is of pathophysiological importance during the early stages of atherogenesis. In later stages of plaque development nonenzymatic lipid peroxidation becomes more relevant.


Diabetes ◽  
1981 ◽  
Vol 30 (10) ◽  
pp. 875-878 ◽  
Author(s):  
B. Gonen ◽  
J. Baenziger ◽  
G. Schonfeld ◽  
D. Jacobson ◽  
P. Farrar

1999 ◽  
Vol 40 (4) ◽  
pp. 686-698 ◽  
Author(s):  
Chao-yuh Yang ◽  
Zi-Wei Gu ◽  
Manlan Yang ◽  
Shen-Nan Lin ◽  
Anthony J. Garcia-Prats ◽  
...  

1981 ◽  
Vol 22 (2) ◽  
pp. 382-386
Author(s):  
M R Taskinen ◽  
J D Johnson ◽  
M L Kashyap ◽  
K Shirai ◽  
C J Glueck ◽  
...  

2021 ◽  
Vol 8 (7) ◽  
pp. 121
Author(s):  
Dongmei Xing ◽  
Baogen Wang ◽  
Hong Lu ◽  
Tao Peng ◽  
Jianming Su ◽  
...  

Fatty liver is closely associated with elevated concentrations of nonesterified fatty acids (NEFA) and a low level of very low-density lipoproteins (VLDL) in blood of dairy cows. High NEFA inhibit the VLDL synthesis and assembly, and cause hepatic triacylglycerol (TAG) deposition. Sirtuin 3 (SIRT3), a mitochondrial deacetylase, antagonizes NEFA-induced TAG accumulation through modulating expressions of fatty acid synthesis and oxidation genes in cow hepatocytes. However, the role of SIRT3 in the VLDL synthesis and assembly was largely unknown. Here we aimed to test whether SIRT3 would recover the synthesis and assembly of VLDL in cow hepatocytes induced by high NEFA. Primary cow hepatocytes were isolated from 3 Holstein cows. Hepatocytes were infected with SIRT3 overexpression adenovirus (Ad-SIRT3), SIRT3-short interfering (si) RNA, or first infected with Ad-SIRT3 and then incubated with 1.0 mM NEFA (Ad-SIRT3 + NEFA). Expressions of key genes in VLDL synthesis and the VLDL contents in cell culture supernatants were measured. SIRT3 overexpression significantly increased the mRNA abundance of microsomal triglyceride transfer protein (MTP), apolipoprotein B100 (ApoB100) and ApoE (p < 0.01), and raised VLDL contents in the supernatants (p < 0.01). However, SIRT3 silencing displayed a reverse effect in comparison to SIRT3 overexpression. Compared with NEFA treatment alone, the Ad-SIRT3 + NEFA significantly upregulated the mRNA abundance of MTP, ApoB100 and ApoE (p < 0.01), and increased VLDL contents in the supernatants (p < 0.01). Our data demonstrated that SIRT3 restored the synthesis and assembly of VLDL in cow hepatocytes challenged with NEFA, providing an in vitro basis for further investigations testing its feasibility against hepatic TAG accumulation in dairy cows during the perinatal period.


Sign in / Sign up

Export Citation Format

Share Document