Parkinson’s disease hand tremor detection system for mobile application

2016 ◽  
Vol 40 (3) ◽  
pp. 127-134 ◽  
Author(s):  
Luay Fraiwan ◽  
Ruba Khnouf ◽  
Abdel Razaq Mashagbeh
Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3236 ◽  
Author(s):  
Andrius Lauraitis ◽  
Rytis Maskeliūnas ◽  
Robertas Damaševičius ◽  
Tomas Krilavičius

We present a model for digital neural impairment screening and self-assessment, which can evaluate cognitive and motor deficits for patients with symptoms of central nervous system (CNS) disorders, such as mild cognitive impairment (MCI), Parkinson’s disease (PD), Huntington’s disease (HD), or dementia. The data was collected with an Android mobile application that can track cognitive, hand tremor, energy expenditure, and speech features of subjects. We extracted 238 features as the model inputs using 16 tasks, 12 of them were based on a self-administered cognitive testing (SAGE) methodology and others used finger tapping and voice features acquired from the sensors of a smart mobile device (smartphone or tablet). Fifteen subjects were involved in the investigation: 7 patients with neurological disorders (1 with Parkinson’s disease, 3 with Huntington’s disease, 1 with early dementia, 1 with cerebral palsy, 1 post-stroke) and 8 healthy subjects. The finger tapping, SAGE, energy expenditure, and speech analysis features were used for neural impairment evaluations. The best results were achieved using a fusion of 13 classifiers for combined finger tapping and SAGE features (96.12% accuracy), and using bidirectional long short-term memory (BiLSTM) (94.29% accuracy) for speech analysis features.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 890-890
Author(s):  
JuHee Lee ◽  
Yujin Suh ◽  
Yielin Kim

Abstract Smart phone-based technology for people with Parkinson’s disease has been developed worldwide. Unmonitored non-motor symptoms decrease quality of life of people with Parkinson’s disease, so the needs for technology to manage non-motor symptoms are increasing. The technology is needed to detect subtle changes in non-motor symptoms by healthcare professional. There is no mobile app which manage comprehensive symptoms of Parkinson’s disease including non-motor symptoms. It is necessary to develop a new tracking system that can effectively manage non-motor symptoms as well as motor symptoms of Parkinson’s disease. We developed a prototype of mobile app for Android smartphones, with cooperation with Mazelone company. we also have shaped functions for monitoring of motor symptoms and medication adherence. It also provided a section for caregivers to use on behalf of people with Parkinson’s disease who have difficulty to use app due to hand tremor. Through Delphi technique, we obtained content validity from eight medical and nursing experts on the contents of the application. We provided regular telephone counseling to improve and encourage their app usage. Fifteen participants used the app for 6 weeks. To evaluate usability of mobile app, we provided constructed questionnaire and conducted individual telephone interview. A mobile app for tracking non-motor symptoms demonstrated high usability and satisfaction. We learned lessons about facilitators and barriers when implementing an app such as perception and acceptance of mobile technology. The mobile app will improve continuum of care. Future studies need to improve the contents and refine technical approach for people with Parkinson’s disease.


2021 ◽  
Vol 11 ◽  
pp. 184798042098735
Author(s):  
Xiaohong Li ◽  
Wei Shi ◽  
Wenyan Zhang ◽  
Weiyao Chen ◽  
Dan Cao ◽  
...  

Parkinson’s disease (PD) is a nervous disorder, affects physical movement, and leads to difficulty in balancing, walking, and coordination. A novel sensor is mandatory to determine PD and monitor the progress of the treatment. Neurofilament light chain (NfL) has been recognized as a good biomarker for PD and also helps to distinguish between PD and atypical PD syndromes. Immunosensor was generated by current–volt measurement on gap-fingered interdigitated electrode with silicon dioxide surface to determine NfL level. To enhance the detection, anti-NfL antibody was complexed with gold-nanourchin and immobilized on the sensing electrode. The current–volt response was gradually increased at the linear detection range from 100 fM to 1 nM. Limit of detection and sensitivity were 100 fM with the signal-to-noise ratio at n = 3 on a linear curve ( y = 0.081 x + 1.593; R 2 = 0.9983). Limit of quantification falls at 1 pM and high performance of the sensor was demonstrated by discriminating against other neurogenerative disease markers, in addition, it was reproducible even in serum-spiked samples. This method of detection system aids to measure the level of NfL and leads to determine the condition with PD.


2021 ◽  
Vol 90 ◽  
pp. 161-164
Author(s):  
Seong-Min Choi ◽  
Soo Hyun Cho ◽  
Kyung Wook Kang ◽  
Jae-Myung Kim ◽  
Byeong C. Kim

2013 ◽  
Vol 02 (02) ◽  
pp. 62-67 ◽  
Author(s):  
Robert LeMoyne ◽  
Timothy Mastroianni ◽  
Warren Grundfest

2020 ◽  
Vol 79 ◽  
pp. 86-91
Author(s):  
Sergio Clavijo-Buendía ◽  
Francisco Molina-Rueda ◽  
Patricia Martín-Casas ◽  
Paulina Ortega-Bastidas ◽  
Esther Monge-Pereira ◽  
...  

2019 ◽  
Vol 13 (3) ◽  
pp. 503-515 ◽  
Author(s):  
Val Mikos ◽  
Chun-Huat Heng ◽  
Arthur Tay ◽  
Shih-Cheng Yen ◽  
Nicole Shuang Yu Chia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document