Enhanced life-role participation in response to comprehensive gait training in chronic-stroke survivors

2012 ◽  
Vol 34 (18) ◽  
pp. 1535-1539 ◽  
Author(s):  
Svetlana Pundik ◽  
John Holcomb ◽  
Jessica McCabe ◽  
Janis J. Daly
2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Marcia Belas dos Santos ◽  
Clarissa Barros de Oliveira ◽  
Arly dos Santos ◽  
Cristhiane Garabello Pires ◽  
Viviana Dylewski ◽  
...  

Objectives. To assess the influence of RAGT on balance, coordination, and functional independence in activities of daily living of chronic stroke survivors with ataxia at least one year of injury.Methods. It was a randomized controlled trial.The patients were allocated to either therapist-assisted gait training (TAGT) or robotic-assisted gait training (RAGT). Both groups received 3 weekly sessions of physiotherapy with an estimated duration of 60 minutes each and prescribed home exercises. The following outcome measures were evaluated prior to and after the completion of the 5-month protocol treatment: BBS, TUG test, FIM, and SARA. For intragroup comparisons, the Wilcoxon test was used, and the Mann–Whitney test was used for between-group comparison.Results. Nineteen stroke survivors with ataxia sequel after one year of injury were recruited. Both groups showed statistically significant improvement (P<0.05) in balance, functional independencein, and general ataxia symptoms. There were no statistically significant differences (P<0.05) for between-group comparisons both at baseline and after completion of the protocol.Conclusions. Chronic stroke patients with ataxia had significant improvements in balance and independence in activities of daily living after RAGT along with conventional therapy and home exercises. This trial was registered with trial registration number39862414.6.0000.5505.


Author(s):  
Simone S. Fricke ◽  
Hilde J. G. Smits ◽  
Cristina Bayón ◽  
Jaap H. Buurke ◽  
Herman van der Kooij ◽  
...  

Abstract Background Recently developed controllers for robot-assisted gait training allow for the adjustment of assistance for specific subtasks (i.e. specific joints and intervals of the gait cycle that are related to common impairments after stroke). However, not much is known about possible interactions between subtasks and a better understanding of this can help to optimize (manual or automatic) assistance tuning in the future. In this study, we assessed the effect of separately assisting three commonly impaired subtasks after stroke: foot clearance (FC, knee flexion/extension during swing), stability during stance (SS, knee flexion/extension during stance) and weight shift (WS, lateral pelvis movement). For each of the assisted subtasks, we determined the influence on the performance of the respective subtask, and possible effects on other subtasks of walking and spatiotemporal gait parameters. Methods The robotic assistance for the FC, SS and WS subtasks was assessed in nine mildly impaired chronic stroke survivors while walking in the LOPES II gait trainer. Seven trials were performed for each participant in a randomized order: six trials in which either 20% or 80% of assistance was provided for each of the selected subtasks, and one baseline trial where the participant did not receive subtask-specific assistance. The influence of the assistance on performances (errors compared to reference trajectories) for the assisted subtasks and other subtasks of walking as well as spatiotemporal parameters (step length, width and height, swing and stance time) was analyzed. Results Performances for the impaired subtasks (FC, SS and WS) improved significantly when assistance was applied for the respective subtask. Although WS performance improved when assisting this subtask, participants were not shifting their weight well towards the paretic leg. On a group level, not many effects on other subtasks and spatiotemporal parameters were found. Still, performance for the leading limb angle subtask improved significantly resulting in a larger step length when applying FC assistance. Conclusion FC and SS assistance leads to clear improvements in performance for the respective subtask, while our WS assistance needs further improvement. As effects of the assistance were mainly confined to the assisted subtasks, tuning of FC, SS and WS can be done simultaneously. Our findings suggest that there may be no need for specific, time-intensive tuning protocols (e.g. tuning subtasks after each other) in mildly impaired stroke survivors.


2020 ◽  
Vol 101 (11) ◽  
pp. e46
Author(s):  
Yaejin Moon ◽  
Kelly McKenzie ◽  
Lindsey Yingling ◽  
Elliot Roth ◽  
Richard Lieber ◽  
...  

2012 ◽  
Vol 34 (26) ◽  
pp. 2264-2271 ◽  
Author(s):  
Svetlana Pundik ◽  
John Holcomb ◽  
Jessica McCabe ◽  
Janis J. Daly

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
V. Krishnan ◽  
I. Khoo ◽  
P. Marayong ◽  
K. DeMars ◽  
J. Cormack

Asymmetrical gait and a reduction in weight bearing on the affected side are a common finding in chronic stroke survivors. The purpose of this pilot study was to determine the effectiveness of a shoe insole device that we developed, called Walk-Even, in correcting asymmetric gait in chronic stroke survivors. Six individuals with chronic (>6 months) stroke underwent 8 weeks of intervention with 2 sessions/week, each consisting of 20 minutes of gait training and 20 minutes of lower-extremity strength training. The 2 control participants underwent conventional gait training, while 4 participants underwent gait training using the Walk-Even. Following intervention, all the participants improved on most of the gait measures: peak pressure of the foot, time of transfer of weight from heel-to-forefoot, center of pressure (COP) trajectory, COP velocity, asymmetry ratio of stance, mean-force-heel, mean-force-metatarsals, Timed “Up and Go,” and Activities-specific Balance Scale. The improvement was more pronounced in the 4 participants that underwent training with Walk-Even compared to the control participants. This pilot study suggests that a combination of strength and gait training with real-time feedback may reduce temporal asymmetry and enhance weight-bearing on the affected side in chronic stroke survivors. A large randomized controlled study is needed to confirm its efficacy.


Author(s):  
J. F. Alingh ◽  
B. E. Groen ◽  
J. F. Kamphuis ◽  
A. C. H. Geurts ◽  
V. Weerdesteyn

Abstract Background After stroke, some individuals have latent, propulsive capacity of the paretic leg, that can be elicited during task-specific gait training. The aim of this proof-of-concept study was to investigate the effect of five-week robotic gait training for improving propulsion symmetry by increasing paretic propulsion in chronic stroke survivors. Methods Twenty-nine individuals with chronic stroke and impaired paretic propulsion (≥ 8% difference in paretic vs. non-paretic propulsive impulse) were enrolled. Participants received ten 60-min sessions of individual robotic gait training targeting paretic propulsion (five weeks, twice a week), complemented with home exercises (15 min/day) focusing on increasing strength and practicing learned strategies in daily life. Propulsion measures, gait kinematics and kinetics, self-selected gait speed, performance of functional gait tasks, and daily-life mobility and physical activity were assessed five weeks (T0) and one week (T1) before the start of intervention, and one week (T2) and five weeks (T3) after the intervention period. Results Between T0 and T1, no significant differences in outcomes were observed, except for a marginal increase in gait speed (+ 2.9%). Following the intervention, propulsion symmetry (+ 7.9%) and paretic propulsive impulse had significantly improved (+ 8.1%), whereas non-paretic propulsive impulse remained unchanged. Larger gains in propulsion symmetry were associated with more asymmetrical propulsion at T0. In addition, following the intervention significantly greater paretic trailing limb angles (+ 6.6%) and ankle plantarflexion moments (+ 7.1%) were observed. Furthermore, gait speed (+ 7.2%), 6-Minute Walk Test (+ 6.4%), Functional Gait Assessment (+ 6.5%), and daily-life walking intensity (+ 6.9%) had increased following the intervention. At five-week follow-up (T3), gains in all outcomes were retained, and gait speed had further increased (+ 3.6%). Conclusions The post-intervention gain in paretic propulsion did not only translate into improved propulsion symmetry and gait speed, but also pertained to performance of functional gait tasks and daily-life walking activity levels. These findings suggest that well-selected chronic stroke survivors may benefit from task-specific targeted training to utilize the residual propulsive capacity of the paretic leg. Future research is recommended to establish simple baseline measures for identification of individuals who may benefit from such training and confirm benefits of the used training concepts in a randomized controlled trial. Trial registration: Registry number ClinicalTrials.gov (www.clinicaltrials.gov): NCT04650802, retrospectively registered 3 December 2020.


2018 ◽  
Vol 14 (8) ◽  
pp. 826-838 ◽  
Author(s):  
Alice De Luca ◽  
Honoré Vernetti ◽  
Cristina Capra ◽  
Ivano Pisu ◽  
Cinzia Cassiano ◽  
...  

2005 ◽  
Vol 32 (S 4) ◽  
Author(s):  
A.R Luft ◽  
L Forrester ◽  
F Villagra ◽  
R Macko ◽  
D.F Hanley

Author(s):  
Michael Houston ◽  
Xiaoyan Li ◽  
Ping Zhou ◽  
Sheng Lia ◽  
Jinsook Roh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document