scholarly journals Sequence of the Essex-Lopresti lesion—a high-speed video documentation and kinematic analysis

2014 ◽  
Vol 85 (2) ◽  
pp. 177-180 ◽  
Author(s):  
Kilian Wegmann ◽  
Karsten Engel ◽  
Klaus J Burkhart ◽  
Marc Ebinger ◽  
Robert Holz ◽  
...  
2020 ◽  
Vol 49 (5) ◽  
pp. 662-667
Author(s):  
Genilton Vieira ◽  
Maria Ignez Lima Bersot ◽  
Glauber Rocha Pereira ◽  
Filipe Vieira Santos de Abreu ◽  
Agostinho Cardoso Nascimento-Pereira ◽  
...  

2013 ◽  
Vol 2013 (0) ◽  
pp. _J027022-1-_J027022-5
Author(s):  
Yusuke UCHIDA ◽  
Gen LI ◽  
Masashi NAKAMURA ◽  
Hiroto TANAKA ◽  
Hao LIU

2000 ◽  
Vol 203 (14) ◽  
pp. 2159-2170 ◽  
Author(s):  
M. Verstappen ◽  
P. Aerts ◽  
R. Van Damme

The inter-limb kinematic patterns of walking, running and out-of-phase hopping in black-billed magpies (Pica pica) were studied using high-speed video recordings. The flexion/extension patterns of the joints were similar between the gait types, suggesting that the within-leg control of the angular excursions is similar. This result is further supported by the fact that running and hopping are alternative gaits at speeds higher than walking; however, magpies show a preference for hopping. Moreover, only small differences occur between the kinematic patterns of the two limbs during out-of-phase hopping, during which the legs are believed to have different functions. The hindlimb kinematic patterns of magpies are like those of other flying and more terrestrial bird species; however, striking differences are found in comparison with humans at the level of the internal angles. This is probably due to the differences in the morphology and configuration of their legs.


2019 ◽  
Vol 85 (6) ◽  
pp. 53-63 ◽  
Author(s):  
I. E. Vasil’ev ◽  
Yu. G. Matvienko ◽  
A. V. Pankov ◽  
A. G. Kalinin

The results of using early damage diagnostics technique (developed in the Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN) for detecting the latent damage of an aviation panel made of composite material upon bench tensile tests are presented. We have assessed the capabilities of the developed technique and software regarding damage detection at the early stage of panel loading in conditions of elastic strain of the material using brittle strain-sensitive coating and simultaneous crack detection in the coating with a high-speed video camera “Video-print” and acoustic emission system “A-Line 32D.” When revealing a subsurface defect (a notch of the middle stringer) of the aviation panel, the general concept of damage detection at the early stage of loading in conditions of elastic behavior of the material was also tested in the course of the experiment, as well as the software specially developed for cluster analysis and classification of detected location pulses along with the equipment and software for simultaneous recording of video data flows and arrays of acoustic emission (AE) data. Synchronous recording of video images and AE pulses ensured precise control of the cracking process in the brittle strain-sensitive coating (tensocoating)at all stages of the experiment, whereas the use of structural-phenomenological approach kept track of the main trends in damage accumulation at different structural levels and identify the sources of their origin when classifying recorded AE data arrays. The combined use of oxide tensocoatings and high-speed video recording synchronized with the AE control system, provide the possibility of definite determination of the subsurface defect, reveal the maximum principal strains in the area of crack formation, quantify them and identify the main sources of AE signals upon monitoring the state of the aviation panel under loading P = 90 kN, which is about 12% of the critical load.


Author(s):  
Hirokazu Takahashi ◽  
Takahiro Murooka ◽  
Kan Toyoshima ◽  
Hitoshi Uematsu ◽  
Tetsuro Fujii

Sign in / Sign up

Export Citation Format

Share Document