Measurement of forced convection subcooled boiling flow through a vertical annular channel with high-speed video cameras and image reconstruction

Author(s):  
Atsushi Ui ◽  
Masahiro Furuya ◽  
Takahiro Arai ◽  
Kenetsu Shirakawa
2003 ◽  
Author(s):  
Rong Situ ◽  
Ye Mi ◽  
Xiaodong Sun ◽  
Mamoru Ishii ◽  
Michitrugu Mori

Forced convection subcooled boiling experiments were conducted in a BWR-scaled vertical upward annular channel. Water was used as the testing fluid, and the tests were performed at atmospheric pressure. A high-speed digital video camera was applied to capture the dynamics of the bubble nucleation process. Bubble lift-off diameters were obtained from the images for a total of 91 test conditions. A force balance analysis of a growing bubble was carried out. A constitutive relation for bubble lift-off size was obtained by correlating current water data and R113 data from literature. The proposed constitutive relation and experimental data agree well with each other.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 137
Author(s):  
Hirotaka Nakashima ◽  
Gen Horiuchi ◽  
Shinji Sakurai

This study aimed to determine the minimum required initial velocity to hit a fly ball toward the same field (left-field for right-handed batters), center field, and opposite field (right field for right-handed batters). Six baseball players hit fastballs launched by a pitching machine. The movements of the balls before and after bat-to-ball impact were recorded using two high-speed video cameras. The flight distance was determined using a measuring tape. Seventy-nine trials were analyzed, and the minimum required initial velocities of batted balls were quantified to hit balls 60, 70, 80, 90, 100, 110, and 120 m in each direction through regression analysis. As a result, to hit a ball 120 m, initial velocities of 43.0, 43.9, and 46.0 m/s were required for the same field, center field, and opposite field, respectively. The result provides a useful index for batters to hit a fly ball in each of the directions.


2021 ◽  
Vol 250 ◽  
pp. 01011
Author(s):  
Jorge López-Puente ◽  
Jesús Pernas-Sánchez ◽  
José Alfonso Artero-Guerrero ◽  
David Varas ◽  
Joseba Múgica ◽  
...  

The improvement of engines is one of the ways to diminish the fuel consumption in civil aircrafts, and Open Rotors engines are one of the best promises in order to achieve a sensible efficiency increment. These engines have large composite blades that could, in the event of failure, impact against the fuselage, totally or partially. In this case, composite fragments could behave as impactors. In order to design fuselages for this event and adopt these new engines in the future, it is necessary to understand the impact behaviour of a composite fragment against a deformable structure. To this end, unidirectional and woven composites fragments were impacted at high velocity (up to 150 m/s) against aluminium panels at different impact velocities. The composite fragments were made using AS4/8552 (UD) and AGP-193PW (woven) prepregs manufactured by Hexcel Composites, both using AS4 fibres and 8552 epoxy matrix. High speed video cameras were used to record the impact process and to measure both the impact and the residual velocity and hence the energy absorbed.


2016 ◽  
Vol 139 (4) ◽  
pp. 2204-2204 ◽  
Author(s):  
Bozena Kostek ◽  
Piotr Szczuko ◽  
Jozef Kotus ◽  
Maciej Szczodrak ◽  
Andrzej Czyzewski

2013 ◽  
Vol 2013 (0) ◽  
pp. _J027022-1-_J027022-5
Author(s):  
Yusuke UCHIDA ◽  
Gen LI ◽  
Masashi NAKAMURA ◽  
Hiroto TANAKA ◽  
Hao LIU

2008 ◽  
Vol 5 (3) ◽  
pp. 157-164 ◽  
Author(s):  
T. Landgraf ◽  
H. Moballegh ◽  
R. Rojas

We have designed a robotic honeybee to mimic the bee dance communication system. To achieve this goal, a tracking system has been developed to extract real bee dance trajectories recorded with high-speed video cameras. The results have been analysed to find the essential properties required for the prototype robot. Putative signals in the dance communication have been identified from the literature. Several prototypes were built with successive addition of more features or improvement of existing components. Prototypes were tested in a populated beehive results were documented using high-speed camera recordings. A substantial innovation is a visual feedback system that helps the robot to minimise collisions with other bees.


Author(s):  
M. R. Nematollahi ◽  
M. H. Akbari

Vibration characteristics of subcooled boiling flow on thin and long structures such as a heating rod were recently investigated by the authors. The results show that the intensity of the subcooled boiling-induced vibration (SBIV) was influenced strongly by the conditions of subcooling temperature, linear power density and flow velocity. Implosive bubble formation and collapse are the main nature of subcooled boiling, and their behavior are the only sources to originate SBIV. Therefore, in order to explain the phenomenon of SBIV, it is essential to obtain reliable information about bubble behavior in subcooled boiling conditions. This was investigated at different conditions of coolant subcooling temperatures of 25 to 75°C, coolant flow velocities of 16 to 53 cm/s, and linear power densities of 100 to 600 W/cm. High speed photography at 13,500 frames per second was performed at these conditions. The results show that even at the highest subcooling condition, the absolute majority of bubbles collapse very close to the surface after detaching from the heating surface. Based on these observations, a simple model of surface tension and momentum change is introduced to offer a rough quantitative estimate of the force exerted on the heating surface. The formation of a typical bubble in subcooled boiling is predicted to exert an excitation force in the order of 10−4 N.


2002 ◽  
Vol 5 (3) ◽  
pp. 213-224 ◽  
Author(s):  
G. T. Etoh ◽  
K. Takehara ◽  
Y. Takano

2010 ◽  
Vol 114 (1161) ◽  
pp. 673-680 ◽  
Author(s):  
A. C. Carruthers ◽  
A. L. R. Thomas ◽  
S. M. Walker ◽  
G. K. Taylor

Abstract This paper reviews recent results on the mechanics and aerodynamics of perching in a large bird of prey, the Steppe Eagle Aquila nipalensis. Data collected using onboard and high-speed video cameras are used to examine gross morphing of the wing planform by the flight muscles, and smaller-scale morphing of the wing profile by aeroelastic deflection of the feathers, Carruthers et al. High-resolution still images are used to reconstruct the shape of the wing using multi-station photogrammetry, and the performance of the measured wing profile is analysed using a panel code, Carruthers et al. In bringing these lines of research together, we examine the role of aeroelastic feather deflection, and show that the key to perching in birds lies not in high-lift aerodynamics, but in the way in which the wings and tail morph to allow the bird to transition quickly from a steady glide into a deep stall.


2017 ◽  
Author(s):  
T. Masunari ◽  
K. Yamagami ◽  
M. Mizuno ◽  
S. Une ◽  
M. Uotani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document