scholarly journals Improved quality of cartilage repair by bone marrow mesenchymal stem cells for treatment of an osteochondral defect in a cynomolgus macaque model

2014 ◽  
Vol 86 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Susumu Araki ◽  
Shinji Imai ◽  
Hirohito Ishigaki ◽  
Tomohiro Mimura ◽  
Kazuya Nishizawa ◽  
...  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Mohamed E. Awad ◽  
Khaled A. Hussein ◽  
Inas Helwa ◽  
Mohamed F. Abdelsamid ◽  
Alexandra Aguilar-Perez ◽  
...  

The aim of this study is to review all the published clinical trials on autologous bone marrow mesenchymal stem cells (BM-MSCs) in the repair of cartilage lesions of the knee. We performed a comprehensive search in three electronic databases: PubMed, Medline via Ovid, and Web of Science. A systematic review was conducted according to the guidelines of PRISMA protocol and the Cochrane Handbook for Systematic Reviews of Interventions. The modified Coleman methodology score was used to assess the quality of the included studies. Meta-analysis was conducted to estimate the effect size for Pain and function change after receiving BM-MSCs. Thirty-three studies—including 724 patients of mean age 44.2 years—were eligible. 50.7% of the included patients received cultured BM-MSCs for knee cartilage repair. There was improvement in the MINORS quality score over time with a positive correlation with the publication year. Meta-analysis indicated better improvement and statistical significance in the Visual Analog Scale for Pain, IKDC Function, Tegner Activity Scale, and Lysholm Knee Score after administration of noncultured BM-MSCs when compared to evaluation before the treatment. Meanwhile, there was a clear methodological defect in most studies with an average modified Coleman methodology score (MCMS) of 55. BM-MSCs revealed a clinically relevant improvement in pain, function, and histological regeneration.


2015 ◽  
Vol 77 (25) ◽  
Author(s):  
Rozlin Abdul Rahman ◽  
Norhamiza Mohamad Sukri ◽  
Noorhidayah Md Nazir ◽  
Muhammad Aa’zamuddin Ahmad Radzi ◽  
Ahmad Hafiz Zulkifly ◽  
...  

Articular cartilage has poor repair capacity due to its avascular and aneural properties and has relatively few cells. This study investigated the ability of autologous implantation approach using three dimensional (3D) constructs engineered from bone marrow mesenchymal stem cells (BMSCs) seeded on poly(lactic-co-glycolic acid) (PLGA) with or without fibrin as cells carrier for the repair of osteochondral defect in rabbit model. The engineered 3D constructs – PLGA/Fibrin/BMSCs and PLGA/BMSCs – were cultured for 3 weeks in vitro and implanted autologously to the osteochondral defect created in the rabbit knee. The in vivo constructs were harvested and evaluated by means of gross observation, histology assessment, gene expression study, sulphated glycosaminoglycan (sGAG) production assay and biomechanical evaluation at 6 and 12 weeks post implantation. The results showed that the osteochondral defects treated with the PLGA/Fibrin/BMSCs constructs exhibited better repairment, more cartilaginous extracellular matrix, higher sGAG production, superior compressive strength and more intense expression of chondrogenic marker genes than the PLGA/BMSCs group. This study suggested that the PLGA/Fibrin/BMSCs has the potential to treat osteochondral defect and may be presented as a viable therapeutic option for those who would be in need from the life-extending benefits of tissue replacement or repair.


2013 ◽  
Vol 198 (6) ◽  
pp. 414-427 ◽  
Author(s):  
Xing-hua Pan ◽  
Qiao-qiao Song ◽  
Jie-jie Dai ◽  
Xiang Yao ◽  
Jin-xiang Wang ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
pp. 395-404
Author(s):  
Jing Hu ◽  
Wen-Zhong Zou ◽  
Ling Li ◽  
Zheng-shuai Shi ◽  
Xiang-Zhong Liu ◽  
...  

Background: Recruitment of gene modifying bone marrow mesenchymal stem cells (BMSCs) has been considered an alternative to single-cell injection in articular cartilage repair. Purpose: This study aimed to investigate whether the effect of runt-related transcription factor 2(Runx2) overexpression bone marrow mesenchymal stem cells in vivo could improve the quality of repaired tissue of a knee cartilage defect in a rabbit model. Methods: Thirty-two New Zealand rabbits were randomly divided into four groups. The blank group (Con) did not receive anything, the model group (Mo) was administered saline, the simple stem cell group (MSCs) received MSCs injection, and the Runx2 transfection group (R-MSCs) received Runx2 overexpression MSCs injection. After adapting to the environment for a week, a 5 mm diameter cylindrical osteochondral defect was created in the center of the medial femoral condyle. Cell and saline injections were performed in the first and third weeks after surgery. The cartilage repair was evaluated by macroscopically and microscopically at 4 and 8 weeks. Results: Macroscopically, defects were filled and surfaces were smoother in the MSCs groups than in the Mo group at 4th week. Microscopically, the R-MSCs group showed coloration similar to surrounding normal articular cartilage tissue at 8 weeks in masson trichrome staining. The COL-II, SOX9, and Aggrecan mRNA expressions of MSCs were enhanced at 4 weeks compared with R-MSCs, then the expression reduced at 8 weeks, but was still higher than Mo group level (P<0.05). The western blot examination revealed that the COL-IIand SOX9 expression of MSCs was higher than R-MSCs at 4 weeks, then the expression reduced at 8 weeks, but was still higher than the Mo level (P<0.05). The IL-1β content in the joint fluid also revealed that cartilage repair with R-MSCs was better than that with MSCs at 8 weeks (P<0.05). Conclusions: The R-MSCs group showed cellular morphology and arrangement similar to surrounding normal articular cartilage tissue, and Runx2 overexpression of MSCs resulted in overall superior cartilage repair as compared with MSCs at 8 weeks.


Sign in / Sign up

Export Citation Format

Share Document