scholarly journals Operating Performance of Power Systems Integrated HVDC Solution: KonTum-GiaLai Transmission System Case Considering Penetration of Renewable Energy

Author(s):  
Kim Hung Le ◽  
Ngoc Thien Nam Tran ◽  
Viet Tri Nguyen ◽  
The Khanh Truong ◽  
Minh Quan Duong

The increasing demand for electricity along with the development of distributed generators showed that improving transmission efficiency and reliability is an indispensable requirement in the operation of the power system. Advanced technologies need to be applied to modern power systems for purposes of conveying large power flows, mitigating the risk of faults. High-voltage direct current (HVDC) transmission is now considered an effective solution for investment in large-length power lines, replacing the conventional high-voltage alternative current (HVAC) transmission system, especially in period of increasing generation capacity due to the penetration of renewable energy sources. This study assesses the performance of the HVDC system on an actual power grid based on planning and improvement demands. The calculation results of power flows, power losses and short-circuit faults were investigated using ETAP software X  

2019 ◽  
Vol 11 (14) ◽  
pp. 3839 ◽  
Author(s):  
Makbul A.M. Ramli ◽  
H.R.E.H. Bouchekara ◽  
Abdulsalam S. Alghamdi

Substituting a single large power grid into various manageable microgrids is the emerging form for maintaining power systems. A microgrid is usually comprised of small units of renewable energy sources, battery storage, combined heat and power (CHP) plants and most importantly, an energy management system (EMS). An EMS is responsible for the core functioning of a microgrid, which includes establishing continuous and reliable communication among all distributed generation (DG) units and ensuring well-coordinated activities. This research focuses on improving the performance of EMS. The problem at hand is the optimal scheduling of the generation units and battery storage in a microgrid. Therefore, EMS should ensure that the power is shared among different sources following an imposed scenario to meet the load requirements, while the operational costs of the microgrid are kept as low as possible. This problem is formulated as an optimization problem. To solve this problem, this research proposes an enhanced version of the most valuable player algorithm (MVPA) which is a new metaheuristic optimization algorithm, inspired by actual sporting events. The obtained results are compared with numerous well-known optimization algorithms to validate the efficiency of the proposed EMS.


2020 ◽  
Vol 12 (3) ◽  
pp. 1074 ◽  
Author(s):  
Pavel Atănăsoae

The benefits of cogeneration or combined heat and power (CHP) of large power systems are well proven. The technical and economic viability of micro-cogeneration systems is discussed in this paper as it compares to the separate production of electricity and heat. A case study for an individual household is also provided to better understand the benefits of small power cogeneration from renewable energy sources. Two micro-CHP systems are considered for analysis: the first with Stirling engine, and the second with Rankine Organic Cycle. The reference scenario is an individual household with a gas boiler and electricity from the public network. The results show that it is possible that the payback period for the micro-CHP from renewable energy sources will fall below the accepted average value (<15 years) without the support schemes. The economic and environmental benefits of small power cogeneration systems compared to the traditional scenario are highlighted.


2014 ◽  
Vol 556-562 ◽  
pp. 1822-1825
Author(s):  
Zhi Rui Liang ◽  
Meng Ya Zhao

The advantage of HVDC is large power of transmission, low cost and good control performance. Generation system has harmonic because of the nonlinear characteristics of the converter. It has very important significance for HVDC transmission system to accurate analysis and rational allocation of harmonic filtering device. This paper mainly studies the characteristics and suppression of harmonics on AC side in HVDC system, and the filtering effect of different filter combinations of simulation.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 115
Author(s):  
Nasser Hosseinzadeh ◽  
Asma Aziz ◽  
Apel Mahmud ◽  
Ameen Gargoom ◽  
Mahbub Rabbani

The main purpose of developing microgrids (MGs) is to facilitate the integration of renewable energy sources (RESs) into the power grid. RESs are normally connected to the grid via power electronic inverters. As various types of RESs are increasingly being connected to the electrical power grid, power systems of the near future will have more inverter-based generators (IBGs) instead of synchronous machines. Since IBGs have significant differences in their characteristics compared to synchronous generators (SGs), particularly concerning their inertia and capability to provide reactive power, their impacts on the system dynamics are different compared to SGs. In particular, system stability analysis will require new approaches. As such, research is currently being conducted on the stability of power systems with the inclusion of IBGs. This review article is intended to be a preface to the Special Issue on Voltage Stability of Microgrids in Power Systems. It presents a comprehensive review of the literature on voltage stability of power systems with a relatively high percentage of IBGs in the generation mix of the system. As the research is developing rapidly in this field, it is understood that by the time that this article is published, and further in the future, there will be many more new developments in this area. Certainly, other articles in this special issue will highlight some other important aspects of the voltage stability of microgrids.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1204
Author(s):  
Gul Ahmad Ludin ◽  
Mohammad Amin Amin ◽  
Hidehito Matayoshi ◽  
Shriram S. Rangarajan ◽  
Ashraf M. Hemeida ◽  
...  

This paper proposes a new and surge-less solid-state direct current (DC) circuit breaker in a high-voltage direct current (HVDC) transmission system to clear the short-circuit fault. The main purpose is the fast interruption and surge-voltage and over-current suppression capability analysis of the breaker during the fault. The breaker is equipped with series insulated-gate bipolar transistor (IGBT) switches to mitigate the stress of high voltage on the switches. Instead of conventional metal oxide varistor (MOV), the resistance–capacitance freewheeling diodes branch is used to bypass the high fault current and repress the over-voltage across the circuit breaker. The topology and different operation modes of the proposed breaker are discussed. In addition, to verify the effectiveness of the proposed circuit breaker, it is compared with two other types of surge-less solid-state DC circuit breakers in terms of surge-voltage and over-current suppression. For this purpose, MATLAB Simulink simulation software is used. The system is designed for the transmission of 20 MW power over a 120 km distance where the voltage of the transmission line is 220 kV. The results show that the fault current is interrupted in a very short time and the surge-voltage and over-current across the proposed breaker are considerably reduced compared to other topologies.


Sign in / Sign up

Export Citation Format

Share Document